(303) 333-1105

FAX (303) 333-1107
E-mail: Isc@Iscdenver.com

November 29, 2021
Mr. Richard Bratton
Gunnison Valley Properties, LLC
864 W. South Boulder Road, Suite 200
Louisville, CO 80027

Re: Gunnison Rising
Summary of Previous Studies
Gunnison, CO
LSC \#2 10040

Dear Mr. Bratton:
In response to the project team's request, LSC Transportation Consultants, Inc. has prepared this memorandum summarizing our work on previous traffic studies and CDOT access permits for the proposed Gunnison Rising development in Gunnison, Colorado.

GUNNISON RISING MASTER TRAFFIC STUDY - BASIS OF ANNEXATION AND PUD APPROVAL

The Gunnison Rising - "Authentically Colorado" Master Plan Level Traffic Impact Analysis was completed by LSC on December 12, 2006. A Transportation Update Memo was completed on June 8, 2007 to address minor changes in the land use plan. These documents provide the transportation details that supported the annexation of the property into the City of Gunnison and the approved PUD.

US HIGHWAY 50 ACCESS STUDY - CONCEPTUAL APPROVAL OF ACCESS A THROUGH ACCESS F

The City of Gunnison and CDOT completed the November, 2013 Access Study for US Highway 50 from Milepost 157.344 at SH 135 east to Milepost 161.250 which is further east than Ute Lane (East). The study was completed per the agreements reached with the annexation of the Gunnison Rising property noted above and included Access A through Access F. It also assumed local connectivity west to College Avenue, Georgia Avenue, and San Juan Avenue.

GUNNISON RISING GOVERNMENT CAMPUS SUBDIVISION TRAFFIC IMPACT STUDY BASIS FOR ACCESS PERMITS FOR ACCESS E AND F

The first two access permits issued for Gunnison Rising are a public access aligning with Ute Lane (West) for public access and an emergency-only access aligning with Ute Lane (East).

These access permits will serve the planned Government Campus and RV Campground area of Gunnison Rising. Access Permit \#320085 was issued for Access E on September 24, 2020 and updated with Access Permit \#321037 on March 15, 2021. Access Permit \#320086 was issued for Access F on September 24, 2020. A one-year extension was granted for Access Permit \#320086 and a one-year extension will be needed for Access Permit \#321037 by March 15, 2022. Once this occurs, both active access permits will have one one-year extension available. These actions were supported by the August 28, 2020 and subsequent February 12, 2021 Gunnison Rising Government Campus Subdivision TIA by LSC. The applicant team is actively preparing construction plans for Access E and F to secure approval from CDOT (NTP) to construct the improvements in 2022.

GUNNISON RISING ACCESS POINTS A AND B TRAFFIC IMPACT STUDY

An access permit from CDOT is currently being pursued for Access B. The February 25, 2021 Gunnison Rising Access Points A and B TIA by LSC was completed to support this effort. The TIA assumed US 50 access at Access A and Access B and local access west to College Avenue and Georgia Avenue. It was determined through coordination with CDOT that it would be best to submit the TIA for CDOT review and then submit access permit applications once CDOT's comments had been addressed.

CDOT's review of the TIA resulted in CDOT suggesting roundabout control for the Access B intersection on US 50 rather than traffic signal control as presented in the TIA and that the two access points would be consistent with, if not identical to, the US 50 Access Control Plan because the applicant is no longer interested in permitting Access C to the east of Access B. The applicant reserves the right to permit Access A and Access D in the future.

A virtual coordination meeting was held with CDOT at which the applicant expressed interest in the roundabout option so CDOT agreed to have their consultant, Kimley-Horn, prepare a conceptual roundabout layout for the applicant to consider. The conceptual layout was provided by CDOT in late August, 2021 and was reviewed positively by the applicant team because a roundabout would calm speeds and could be built with an initial phase and not need a warrant to be met prior to construction as the case would be with traffic signal control. The project team forwarded detailed Survey and CAD files in late September, 2021 to CDOT to further refine the roundabout design. This process is still ongoing. Once a design and cost estimate are available, a roundabout vs. traffic signal decision will be made and the traffic study updated if appropriate and submitted to CDOT with an "Access B" access permit application.

We trust our findings will assist you in your planning efforts for the proposed Gunnison Rising development. Please contact me if you have any questions or need further assistance.

Sincerely,
LSC TRANSPORTATION CONSULTANTS, INC.

Christopher S. McGranahan, PE, PTOE Principal

CSM/wc

$$
11-29-21
$$

Enclosures:

[^0]LSC TRANSPORTATION CONSULTANTS, INC.

1889 York Street
Denver, CO 80206
(303) 333-1105

FAX (303) 333-1107
E-mail: Isc@Iscdenver.com

February 25, 2021
Mr. Richard Bratton
Gunnison Valley Properties, LLC
864 W. South Boulder Road, Suite 200
Louisville, CO 80027

Re: Gunnison Rising
Access Points A and B
Gunnison, CO
LSC \#210040

Dear Mr. Bratton:
In response to your request, LSC Transportation Consultants, Inc. has prepared this traffic impact analysis (CDOT Level III traffic study) for the proposed Gunnison Rising Access Points A and B. As shown on Figure 1, the site is located north and south of US Highway (US) 50 on the far east end of Gunnison, Colorado.

REPORT CONTENTS

The report contains the following: the existing roadway and traffic conditions in the vicinity of the site including the lane geometries, traffic controls, etc.; the existing weekday peak-hour traffic volumes; the existing daily traffic volumes in the area; an adjustment of the traffic volumes for the ongoing pandemic; the typical weekday site-generated traffic volume projections for the site; the short-term and long-term assignment of the projected traffic volumes to the area roadways; the projected short-term and long-term background and resulting total traffic volumes on the area roadways; the site's projected traffic impacts; and any recommended roadway improvements to mitigate the site's traffic impacts. The scope of work is consistent with the attached TIS Methodology Form.

LAND USE AND ACCESS

The Access Points A and B site is proposed to include about 168 single-family dwelling units, about 72 townhome dwelling units, about 176 apartment dwelling units, about 9,500 square feet of retail space, about 4,000 square feet of restaurant space, about a 1,000 square-foot single-tenant office building, a 1,500 square-foot drinking place, a 200 square-foot coffee shop, and a 2,000 square-foot day care center.

Access is proposed to US 50 in two locations as shown in the site plan in Figure 2. The western access (Access A) will be three-quarter to the north by 2030 and right-in/right-out to the south
by 2041. The eastern access (Access B) will be full movement by 2030 and signalized once traffic signal warrants are met.

ROADWAY AND TRAFFIC CONDITIONS

Area Roadways

The major roadways in the site's vicinity are shown on Figure 1 and are described below.

- US Highway 50 (US 50) is an east-west, two-lane US highway adjacent to the site. It is designated R-A (Regional Highway) by CDOT per the attached CDOT Straight Line Diagram. The intersection with Adams Street is stop-sign controlled and shown as a full movement intersection in the US 50 Access Control Plan (ACP). An excerpt from the ACP is attached for reference. The posted speed limit in the vicinity of the site is 65 mph .
- Adams Street is a north-south, two-lane local roadway west of the site. The intersection with US 50 is stop-sign controlled. No speed limit is posted in the vicinity of the site.
- College Avenue is an east-west, two-lane local roadway west of the site. The intersection with Adams Street is stop-sign controlled. No speed limit is posted in the vicinity of the site.

Existing Sight Distance

There is good sight distance in each direction of US 50 from the proposed access locations.

Existing Traffic Conditions

Figure 3a shows the existing January 2021 weekday traffic volumes, existing lane geometry and the existing traffic controls in the vicinity of the site. The weekday peak-hour traffic volumes and average daily traffic volumes are from the attached traffic counts conducted by Counter Measures in January, 2021.

Pandemic Adjustment

Figure 3 b shows the estimated July traffic volumes adjusted for the ongoing pandemic. These volumes are consistent with the existing July traffic volumes in the attached Figure 3b of the Gunnison Rising Government Campus Subdivision TIA by LSC.

2030 and 2041 Background Traffic

Figure 4 shows the estimated 2030 background traffic which assumes an annual growth rate of 0.2 percent based on the CDOT 20-year factor of 1.04 plus other areas of Gunnison Rising expected to be developed by 2030.

Figure 5 shows the estimated 2041 background traffic which assumes an annual growth rate of 0.2 percent based on the CDOT 20-year factor of 1.04 plus development of the balance of

Gunnison Rising planned through 2041. It also assumes half of the school trips are internal to the north side of US 50 .

Existing, 2030, and 2041 Background Levels of Service

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay and LOS F is indicative of a high level of congestion or delay. Attached are specific level of service definitions for signalized and unsignalized intersections.

The intersections in the study area were analyzed to determine the existing, 2030, and 2041 background levels of service using Synchro. Table 1 shows the level of service analysis results. The level of service reports are attached.

- Adams Street/College Avenue: All movements at this unsignalized intersection currently operate at LOS "A" during both morning and afternoon peak-hours and are expected to do so through 2041.
- US 50/Adams Street: All movements at this unsignalized intersection currently operate at LOS "C" or better during both morning and afternoon peak-hours and are expected to do so through 2030. By 2041, all movements are expected to operate at LOS "D" or better with the following exception: The northbound approach is expected to operate at LOS "E" in the afternoon peak-hour.
- US 50/West Site Access (Access A): All movements at this stop-sign controlled intersection are expected to operate at LOS "B" or better during both peak-hours through 2041.
- US 50/East Site Access (Access B): All movements at this stop-sign controlled intersection are expected to operate at LOS "C" or better during both peak-hours through 2030. By 2041 several movements are expected to operate at LOS "E" or "F" during both peakhours with stop-sign control.

TRIP GENERATION

Tables 2 a and 2 b show the estimated average daily, weekday morning peak-hour, and weekday afternoon peak-hour trip generation potential for the proposed site through both 2030 and 2041 based on the rates from Trip Generation, $10^{\text {th }}$ Edition, 2017 by the Institute of Transportation Engineers (ITE).

At buildout the site is projected to generate about 4,389 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 91 vehicles would enter and about 207 vehicles would exit the site. During the afternoon peakhour, which generally occurs for one hour between 4:00 and 6:00 p.m., about 256 vehicles would enter and about 164 vehicles would exit. These volumes will be reduced by internal trips. The Access Points A and B site land uses are shaded in Tables 2a and 2b. The balance of the land uses in Tables 2a and 2 b are the background traffic expected from the balance of Gunnison Rising through both 2030 (Table 2a) and 2041 (Table 2b).

These estimates include an internal trip rate of two percent for the AM peak-hour traffic, five percent for the daily traffic, and eight percent for the PM peak-hour traffic.

TRIP DISTRIBUTION

Figure 6 shows the estimated directional distribution of the site-generated traffic volumes on the area roadways. The estimates were based on the location of the site with respect to the regional population, employment, and activity centers; the site's proposed land use; and on the attached TIS methodology form.

TRIP ASSIGNMENT

Figure 7 shows the assignment of site-generated traffic volumes for the site based on the directional distribution percentages (from Figure 6) and the shaded line items in the trip generation estimate (from Tables 2a or 2 b).

2030 AND 2041 TOTAL TRAFFIC

Figure 8 shows the 2030 total traffic which is the sum of the 2030 background traffic volumes (from Figure 4) and the site-generated traffic volumes (from Figure 7). Figure 8 also shows the recommended 2030 lane geometry and traffic control.

Figure 9 shows the 2041 total traffic which is the sum of the 2041 background traffic volumes (from Figure 5) and the site-generated traffic volumes (from Figure 7). Figure 9 also shows the recommended 2041 lane geometry and traffic control.

PROJECTED LEVELS OF SERVICE

The intersections in the study area were analyzed as appropriate to determine the 2030 and 2041 total levels of service. Table 1 shows the level of service analysis results. The level of service reports are attached.

- Adams Street/College Avenue: All movements at this stop-sign controlled intersection are expected to operate at LOS "A" during both peak-hours through 2041.
- US 50/Adams Street: All movements at this stop-sign controlled intersection are expected to operate at LOS "D" or better during both peak-hours through 2030. By 2041, the northbound and southbound approaches are expected to operate at LOS "E" or "F" in both peak-hours. As a signalized intersection it is expected to operate at an overall LOS "A" during both peak-hours.
- US 50/West Site Access (Access A): All movements at this stop-sign controlled intersection are expected to operate at LOS "C" or better during both peak-hours through 2041.
- US 50/East Site Access (Access B): All movements at this stop-sign controlled intersection are expected to operate at LOS "D" or better during both peak-hours through 2030 with the following exception: The northbound left-turn movement is expected to operate at LOS "E" in the afternoon peak-hour with stop-sign control. By 2041, both the north-
bound left and southbound left-turn movements are expected to operate at LOS "E" or "F" during both peak-hours. As a signalized intersection it is expected to operate at LOS "A" during the morning peak-hour and LOS "B" during the afternoon peak-hour.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

1. The site is projected to generate about 4,389 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, about 91 vehicles would enter and about 207 vehicles would exit the site. During the afternoon peak-hour, about 256 vehicles would enter and about 164 vehicles would exit.
2. The trip generation estimates will be reduced by an internal trip rate of two percent for the AM peak-hour traffic, five percent for the daily traffic, and eight percent for the PM peakhour traffic.

Projected Levels of Service

3. All movements at the unsignalized Adams Street/College Avenue and US 50/West Site Access (Access A) intersections are expected to operate at LOS "C" or better through 2041.
4. A few side road movements at the US 50/Adams Street and US 50/East Site Access (Access B) intersections are expected to operate at LOS "E" or "F" by 2041. If signalized these intersections are expected to operate at an overall LOS "B" or better.

Conclusions

5. The impact of the Gunnison Rising Access Points A and B can be accommodated by the existing and proposed roadway network with the recommended improvements.

Recommendations

6. The recommended improvements are shown in Figure 8.
7. The US 50/Eastern Site Access (Access B) intersection should be signalized once traffic signal warrants are met.

We trust our findings will assist you in gaining approval of the proposed Gunnison Rising Access Points A and B development. Please contact me if you have any questions or need further assistance.

Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

Christopher S. McGranahan, PE, PTOE Principal

CSM/wc

$$
2-25-21
$$

Enclosures: Tables 1 through 2b
Figures 1-9
TIS Methodology Form
CDOT Straight Line Diagram
CDOT US 50 Access Control Plan Excerpt
Traffic Count Reports
Level of Service Definitions
Level of Service Reports
W: \LSC \backslash Projects $\backslash 2021 \backslash 210040$-GunnisonRisingPhase2 \backslash Report \GunnisonRising-AccessPointsA\&B-022521.wpd

Intersection Location	Traffic Control	Table 1 Intersection Levels of Service Analysis Gunnison Rising Access A and B Gunnison, CO LSC \#210040; February, 2021						2041 Background Traffic		$\begin{gathered} 2041 \\ \text { Total Traffic } \\ \hline \end{gathered}$		2041 Total TrafficMitigated	
		Existing Traffic		2030Background Traffic		$\begin{gathered} 2030 \\ \text { Total Traffic } \\ \hline \end{gathered}$							
		Level of Service AM	Level of Service PM	Level of Service AM	Level of Service PM	Level of Service AM	Level of Service PM	Level of Service AM	Level of Service PM	Level of Service AM	Level of Service PM	Level of Service AM	Level of Service PM
Adams Street/College Avenue	TWSC												
WB Approach		A	A	A	A	A	A	A	A	A	A		
SB Left/Through		A	A	A	A	A	A	A	A	A	A		
Critical Movement Delay		9.0	9.0	9.0	9.0	9.1	9.3	9.1	9.3	9.2	9.4		
E. Tomichi Avenue (US 50)/Adams Street	TWSC												
NB Approach		B	c	C	c	c	D	D	E	E	F		
EB Left		A	A	A	A	A	A	A	A	B	B		
WB Left		A	A	A	A	A	A	A	A	A	B		
SB Approach		B	B	B	c	c	C	D	D	E	F		
Critical Movement Delay		13.1	15.7	16.0	18.1	21.2	29.4	29.8	42.6	47.8	99.2		
	Signalized												
EB Left												A	A
EB Through/Right												A	A
WB Left												A	A
WB Through/Right												A	A
NB Approach												C	C
SB Approach												c	c
Entire Intersection Delay (sec./veh.)												5.0	7.2
Entire Intersection LOS												A	A
E. Tomichi Avenue (US 50)/West Site Access	TWSC												
NB Right		--	--	--	--	--	--	A	B	A	c		
EB Left		--	--	--	--	A	A	--	--	A	B		
SB Right		--	--	--	--	A	A	--	--	A	A		
Critical Movement Delay		--	--	--	--	8.5	9.1	0.0	13.8	9.9	15.5		
E. Tomichi Avenue (US 50)/East Site Access	TWSC												
NB Left		--	--	c	c	c	E	F	F	F	F		
NB Through/Right or Right		--	--	B	B	B	c	C	c	C	E		
EB Left		--	--	--	--	A	A	A	A	A	A		
WB Left		--	--	A	A	A	A	A	A	A	A		
SB Left		--	--	--	--	c	D	D	E	E	F		
SB Through/Right		--	--	--	$\stackrel{--}{-7}$	B	B	B	B	C	C		
Critical Movement Delay		--	--	15.2	17.7	23.7	44.1	51.2	>240	114.4	>240		
	Signalized												
EB Left												A	A
EB Through												A	A
EB Right												A	A
WB Left												A	A
WB Through												A	B
WB Right												A	A
NB Left												D	D
NB Through/Right												C	c
SB Left												D	c
SB Through/Right												B	A
Entire Intersection Delay (sec./veh.)												9.7	12.7
Entire Intersection LOS												A	B

TND NORTH OF US HIGHWAY 50 - The shaded areas are the "Site" and all others are background traffic.

2021-2025 ACCESS A, B, COLLEGE											
2 Single-Family Detached ${ }^{(2)}$	$84 \mathrm{DU}^{(3)}$	9.44	0.185	0.555	0.624	0.366	793	16	47	52	31
2 Townhomes ${ }^{(4)}$	36 DU	7.32	0.106	0.354	0.353	0.207	264	4	13	13	7
2 Apartments ${ }^{(4)}$	64 DU	7.32	0.106	0.354	0.353	0.207	468	7	23	23	13
2 Drinking Place ${ }^{(5)}$	$1.5 \mathrm{KSF}^{(6)}$	56.80	0.000	0.000	7.498	3.862	85	0	0	11	6
2 Coffee/Donut Shop ${ }^{(7)}$	0.2 KSF	505.70	51.581	49.559	18.155	18.155	101	10	10	4	4
2 Retail ${ }^{(8)}$	3.5 KSF	37.75	0.583	0.357	1.829	1.981	132	2	1	6	7
2 Restaurant ${ }^{(9)}$	2.5 KSF	83.84	0.489	0.241	5.226	2.574	210	1	1	13	6
				Sub	Total Ph	hase 2 =	2,053	40	95	122	74
2026-2030 ACCESS A, B, COLLEGE, GEORGIA											
3 Single-Family Detached	84 DU	9.44	0.185	0.555	0.624	0.366	793	16	47	52	31
3 Townhomes	36 DU	7.32	0.106	0.354	0.353	0.207	264	4	13	13	7
3 Apartments	112 DU	7.32	0.106	0.354	0.353	0.207	820	12	40	40	23
3 Day Care Center ${ }^{(10)}$	2 KSF	47.62	5.830	5.170	5.226	5.894	95	12	10	10	12
3 Restaurant	1.5 KSF	83.84	0.489	0.241	5.226	2.574	126	1	0	8	4
3 Retail	1 KSF	37.75	0.583	0.357	1.829	1.981	38	1	0	2	2
				Sub	Total Ph	hase 3 =	2,136	46	110	125	79
PHASES 6-10 2041 AND BEYOND											
	Total Trips	North of	US High	way 50	Through	$2030=$	4,189	86	205	247	153

MAKER DISTRICT SOUTH OF US HIGHWAY 50 - The shaded areas are the "Site" and all others are background traffic.

2021-2025 ACCESS E												
1	Government Office Building ${ }^{(13)}$	36 KSF	22.59	2.505	0.835	0.428	1.283	813	90	30	15	46
1	General Light Industrial ${ }^{(14)}$	16 KSF	4.96	0.616	0.084	0.082	0.548	79	10	1	1	9
3	RV Park ${ }^{(15)}$	150 Units	1.35	0.076	0.134	0.176	0.095	203	11	20	26	14
Sub-Total Phase 1 =								1,095	111	51	42	69
2021-2025 B, CR 49												
2	Retail	5 KSF	37.75	0.583	0.357	1.829	1.981	189	3	2	9	10
2	Single-Tenant Office ${ }^{(16)}$	1 KSF	11.25	1.584	0.196	0.257	1.454	11	2	0	0	1
Sub-Total Phase 2 =								200	5	2	9	11
2026-2	ACCESS E											
1	Government Office Building	8 KSF	22.59	2.505	0.835	0.428	1.283	181	20	7	3	10
1	General Light Industrial	20 KSF	4.96	0.616	0.084	0.082	0.548	99	12	2	2	11
3	RV Park	150 Units	1.35	0.076	0.134	0.176	0.095	203	11	20	26	14
Sub-Total Phase 3 =								483	43	29	31	35
2026-2030 ACCESS A, B, CR 49												
4	Single-Tenant Office	2 KSF	11.25	1.584	0.196	0.257	1.454	23	3	0	1	3
4	Research \& Development ${ }^{(17)}$	3 KSF	11.26	0.315	0.105	0.074	0.417	34	1	0	0	1
4	Building Materials ${ }^{(18)}$	20 KSF	18.05	0.989	0.581	0.968	1.092	361	20	12	19	22
4	Single-Tenant Office	4 KSF	11.25	1.584	0.196	0.257	1.454	45	6	1	1	6
4	Nursery Garden Center ${ }^{(19)}$	1.5 KSF	68.1	1.215	1.215	3.470	3.470	102	2	2	5	5
4	Quick Lube Shop ${ }^{(20)}$	1.5 KSF	69.57	4.350	1.450	3.654	5.046	104	7	2	5	8
4	General Light Industrial	3 KSF	4.96	0.616	0.084	0.082	0.548	15	2	0	0	2
4	Mini-Warehouse ${ }^{(21)}$	5 KSF	1.51	0.060	0.040	0.080	0.090	8	0	0	0	0
					Sub	Total Ph	ase 4 =	692	41	17	31	47
Total Trips Maker District South of US Highway 50 Through $2030=$								2,470	200	99	113	162
Total Trips Through $2041=$								6,659	286	304	360	315
Internal Trips (25) =								333	6	6	29	25
Net External Trips =								6,326	280	298	331	290
Notes:												
(1) Source: Trip Generation, Institute of Transportation Engineers, 10th Edition, 2017.												
(2) ITE Land Use No. 210 - Single-Family Detached Housing												
(3) DU = Dwelling Unit												
(4) ITE Land Use No. 220 - Multifamily Housing (Low-Rise)												
(5) ITE Land Use No. 925 - Drinking Place - daily rates assumed to be 5x PM peak hour rate - closed in the morning												
(6) $\mathrm{KSF}=1,000$ square feet												
(7) ITE Land Use No. 936 - Coffee/Donut Shop without drive-through - Daily rate assumed to be 5x AM peak hour rate												
(8) ITE Land Use No. 820 - Shopping Center												
(9) ITE Land Use No. 931 - Quality Restaurant - PM peak distribution used for AM peak as well												
(10) ITE Land Use No. 565 - Day Care Center												
(11) Intentionally left blank												
(12) Intentionally left blank												
(13) ITE Land Use No. 730 - Government Office Building												
(14) ITE Land Use No. 110 - General Light Industrial												
(15) ITE Land Use No. 416 - Campground/Recreational Vehicle Park: no weekday rate so 5x PM Peak Rate was used												
(16) ITE Land Use No. 715 - Single Tenant Office Building												
(17) ITE Land Use No. 760 - Research \& Development Center												
(18) ITE Land Use No. 812 - Building Materials \& Lumber Store												
(19) ITE Land Use No. 817 - Nursery (Garden Center) - no AM or PM peak-hour distribution available so 50\% in/out was used												
(20) ITE Land Use No. 941 - Quick Lubrication Vehicle Shop												
(21) ITE Land Use No. 151 - Mini-Warehouse												
(22) Intentionally left blank												
(23) Intentionally left blank												
(24) Intentionally left blank												
(25) Internal trips were assumed to be two percent in the AM peak-hour, five percent for daily, and eight percent in the PM peak-hour												

COLORADO

Department of Transportation

Region 3

Transportation Impact Study
 Methodology Form

Prior to starting a traffic impact study, a Methodology Form must be submitted for review and signed by the Region 3 Access Engineer. It shall be included as part of the study.

CONTACT INFORMATION

Consultant:	Name:
	LSC Transportation Consultants, Inc. (Chris McGranahan)
	Telephone:
Email $:$	chris@lsctrans.com and Isc@lscdenver.com
Developer/Owner Name:	Gunnison Valley Partners

PROJ ECT INFORMATION

Project Name	Gunnison Rising
Project Location	East of Gunnison, CO on both sides of US 50
Project Description (Attached proposed site plan)	See attached site plan
State Highway	US 50
County	Gunnison
Mile Post	Between 158 and 159
Posted Speed Limit	55 mph approaching from east and 65 mph approaching from west

TIS ASSUMPTIONS

Study Years	Current Year: 2020	Buildout Year: 2025		Long Term Year: 2040
Traffic Assessment Level (Provide justification)	Level 3 Traffic Study			
Study Intersections	1. US 50/Adams Street		6.	
	2. Adams Street/College Avenue		7.	
	3. Proposed Access Point to US 50		8.	
	4.		9.	
	5.		10.	
Future Growth Rate	\square OTIS	\square Regional TDM		\square Other
Seasonal Adjustment Factor	Traffic counts will be modified using both a seasonal and pandemic adjustment.			

COLORADO
Department of Transportation
Region 3
ASSUMPTIONS CONTINUED

Project Trip Distribution (State assumptions and attach sketch that shows individual movements.)	95\% West and 5\% East			
Trip Reduction Percentage	Internal Capture:	Up to that allowed per SHAC	Pass By:	Will be considered based on Trip Generation Handbook
	Multi-Modal:	N/A	Other:	
Study Time Periods (Check all that apply)	$\square \mathrm{\square M}(7-9) \quad \square \mathrm{PM}$		$\square \mathrm{PM}(4-6)$	\square Weekday
	\square SAT (Midday)	\square Other		
Existing and Proposed ITE Trip Generation Land Use	There will be a number of proposed land use types including Single-Family Detached Homes (210), Multi-Family (Low-Rise) (220), Free-Standing Discount Store (815), Retail Shopping (820), Drinking Place (925), Quality Restaurant (931), Coffee Shop (936), Super Convenience Market/Gas Station (960)			
Analysis Methods (Check all that apply)	\square Synchro or $\quad \square$ HCS(isolated intersections only)		SimTraffic or \square Other (closely spaced intersections or when known/ expected queuing issue)	
	\square Signal Warrants		\square Pedestrian/Transit/Bicycle	
	\square Safety/Sight Distance		\square Queuing and Storage	
	\square Other			
Notes and Other Assumptions	We would prepare and submit an overall trip generation table for review by CDOT prior to preparing the full traffic study.			
Crash Data	CDOT will perform a crash data analysis for the highway in the vicinity of the proposed access and provide to the consultant. As a part of the study consultant shall recommend mitigation measures for any identified safety issues.			
Simulation Input Files	Consultant to provide computer files used for analysis with a signed and sealed copy of the study.			

CDOT INTERNAL USE ONLY

Review Comments

Revise and Resubmit
Engineer Signature/Date \square Approved

GUNNISON RISING ANTICIPATED PHASING PLAN

GUNNISON RISING ANTICIPATED PHASING PLAN

Route 050A From 158 to 161

It may appear that information is missing from the straight line diagram. If so, reduce the number of miles/page and re-submit the request.

COUNTER MEASURES INC.

1889 YORK STREET
 DENVER.COLORADO 303-333-7409

N/S STREET: ADAMS STREET
E/W STREET: COLLEGE AVE CITY: GUNNISON
COUNTY: GUNNISON
File Name : ADAMSCOLL
Site Code : 00000017
Start Date : 1/12/2021
Page No : 1
Groups Printed- VEHICLES

	ADAMS STREET Southbound				COLLEGE AVENUE Westbound				ADAMS STREET Northbound				Eastbound				
Start Time	Left	Thru	Right	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	0	0	0	0	0	2	0	0	5	0	0	0	0	0	0	7
06:45 AM	0	1	0	0	0	0	0	0	0	3	0	0	0	0	0	0	4
Total	0	1	0	0	0	0	2	0	0	8	0	0	0	0	0	0	11

07:00 AM	1	1	0	1	1	0	2	0	0	1	0	0	0	0	0	0	7
07:15 AM	0	2	0	0	0	0	0	0	0	6	0	0	0	0	0	0	8
07:30 AM	1	4	0	0	0	0	1	0	0	5	0	0	0	0	0	0	11
07:45 AM	1	1	0	0	0	0	0	0	0	14	0	0	0	0	0	0	16
Total	3	8	0	1	1	0	3	0	0	26	0	0	0	0	0	0	42

| 08:00 AM | 1 | 7 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 18 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $08: 15 \mathrm{AM}$ | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 14 | 1 | 0 | 0 | 0 | 0 | 0 | 22 |

$\begin{array}{lllllllllllllllllllllllll}\text { Total } & 1 & 10 & 0 & 0 & 3 & 0 & 3 & 0 & 0 & 22 & 1 & 0 & 0 & 0 & 0 & 0 & 40\end{array}$

04:00 PM	2	10	0	1	0	0	1	0	0	10	1	0	0	0	0	0	25
04:15 PM	0	13	0	0	0	0	2	0	0	9	0	0	0	0	0	0	24
04:30 PM	1	14	0	2	0	0	1	0	0	12	0	0	0	0	0	0	30
04:45 PM	1	15	0	0	1	0	1	0	0	17	1	0	0	0	0	0	36
Total	4	52	0	3	1	0	5	0	0	48	2	0	0	0	0	0	115

05:00 PM	1	19	0	0	2	0	3	0	0	4	2	0	0	0	0	0	31
05:15 PM	1	12	0	0	0	0	1	0	0	10	0	0	0	0	0	0	24
05:30 PM	3	9	0	0	2	0	1	0	0	8	1	0	0	0	0	0	24
05:45 PM	3	8	0	0	1	0	0	0	0	6	0	0	0	0	0	0	18
Total	8	48	0	0	5	0	5	0	0	28	3	0	0	0	0	0	97

| Grand Total | 16 | 119 | 0 | 4 | 10 | 0 | 18 | 0 | 0 | 132 | 6 | 0 | 0 | 0 | 0 | 0 | 305 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Apprch \% | 11.5 | 85.6 | 0.0 | 2.9 | 35.7 | 0.0 | 64.3 | 0.0 | 0.0 | 95.7 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| Total \% | 5.2 | 39.0 | 0.0 | 1.3 | 3.3 | 0.0 | 5.9 | 0.0 | 0.0 | 43.3 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |

COUNTER MEASURES INC.

1889 YORK STREET
N/S STREET: ADAMS STREET
DENVER.COLORADO
File Name : ADAMSCOLL
E/W STREET: COLLEGE AVE 303-333-7409

Site Code : 00000017
Start Date: 1/12/2021 Page No : 2

	ADAMS STREET Southbound					COLLEGE AVENUE Westbound					ADAMS STREET Northbound					Eastbound					
Start Time	Left	$\begin{array}{r} \hline \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{gathered} \text { Thr } \\ \mathrm{u} \end{gathered}$	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$

Peak Hour From 07:30 AM to 08:15 AM - Peak 1 of 1

COUNTER MEASURES INC.

1889 YORK STREET
N/S STREET: ADAMS STREET
DENVER.COLORADO
File Name : ADAMSCOLL 303-333-7409

Site Code : 00000017
Start Date: 1/12/2021
Page No : 2

	ADAMS STREET Southbound					COLLEGE AVENUE Westbound					ADAMS STREET Northbound					Eastbound					
Start Time	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \\ \hline \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \\ \hline \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	Thr u	$\begin{gathered} \mathrm{Rig} \\ \mathrm{ht} \\ \hline \end{gathered}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \hline \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	Ped s	App. Total	Int. Total

Peak Hour From 04:30 PM to 05:15 PM - Peak 1 of 1

COUNTER MEASURES INC.

```
1889 YORK STREET
DENVER.COLORADO
```

File Name: ADAMSUS50
Site Code : 00000015
Start Date : 1/11/2021 Page No : 1
Groups Printed- VEHICLES

	ADAMS STREET Southbound				EAST TOMICHI AVE (US 50) Westbound				ADAMS STREET Northbound				EAST TOMICHI AVE (US 50) Eastbound				
Start Time	Left	Thru	Right	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	1	0	1	0	0	13	0	0	0	0	0	0	4	12	0	0	31
06:45 AM	0	0	2	0	0	15	2	0	0	0	0	0	7	9	0	0	35
Total	1	0	3	0	0	28	2	0	0	0	0	0	11	21	0	0	66
07:00 AM	2	0	3	0	0	19	7	0	0	0	0	0	3	11	0	0	45
07:15 AM	0	1	7	0	0	26	0	0	0	0	0	0	9	16	0	0	59
07:30 AM	0	0	6	0	0	22	3	0	0	0	0	0	9	19	0	0	59
07:45 AM	0	0	9	0	0	42	3	0	0	0	0	0	14	17	3	0	88
Total	2	1	25	0	0	109	13	0	0	0	0	0	35	63	3	0	251
08:00 AM	4	1	5	0	0	26	3	0	0	0	0	0	15	21	0	0	75
08:15 AM	3	0	8	0	0	17	5	0	0	0	0	0	14	22	0	0	69
Total	7	1	13	0	0	43	8	0	0	0	0	0	29	43	0	0	144

04:00 PM	4	1	20	0	0	29	2	0	0	2	0	0	12	31	1	0	102
$04: 15 \mathrm{PM}$	3	0	16	0	0	20	0	0	1	0	0	2	8	27	1	0	78
$04: 30 \mathrm{PM}$	4	0	17	0	0	38	1	0	4	1	0	0	10	36	1	0	112
$04: 45 \mathrm{PM}$	4	0	17	0	0	27	2	0	0	0	0	0	8	32	4	0	94
Total	15	1	70	0	0	114	5	0	5	3	0	2	38	126	7	0	386

05:00 PM	5	0	13	1	0	34	3	0	0	0	0	0	9	40	0	0	105
$05: 15 ~ P M ~$	5	1	12	0	0	34	0	0	0	0	0	0	16	41	0	0	109
$05: 30 ~ P M ~$	6	0	10	0	1	29	2	0	0	0	0	0	12	38	0	0	98
05:45 PM	2	0	7	0	0	23	2	0	0	0	0	0	10	25	0	0	69
Total	18	1	42	1	1	120	7	0	0	0	0	0	47	144	0	0	381
Grand Total	43	4	153	1	1	414	35	0	5	3	0	2	160	397	10	0	1228
Apprch \%	21.4	2.0	76.1	0.5	0.2	92.0	7.8	0.0	50.0	30.0	0.0	20.0	28.2	70.0	1.8	0.0	
Total \%	3.5	0.3	12.5	0.1	0.1	33.7	2.9	0.0	0.4	0.2	0.0	0.2	13.0	32.3	0.8	0.0	

COUNTER MEASURES INC.

1889 YORK STREET
DENVER.COLORADO
File Name : ADAMSUS50
303-333-7409
Site Code : 00000015
Start Date: 1/11/2021
Page No : 2

N/S STREET: ADAMS STREET
E/W STREET: EAST TOMICHI AVE (US 50)
CITY: GUNNISON
COUNTY: GUNNISON

	ADAMS STREET Southbound					EAST TOMICHI AVE (US 50) Westbound					ADAMS STREET Northbound					EAST TOMICHI AVE (US 50) Eastbound					
Start Time	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \\ \hline \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \text { ht } \end{array}$	Ped s	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$

Peak Hour From 06:30 AM to 08:15 AM - Peak 1 of 1

COUNTER MEASURES INC.

1889 YORK STREET
DENVER.COLORADO
File Name : ADAMSUS50
303-333-7409
Site Code : 00000015
Start Date: 1/11/2021
Page No : 2

N/S STREET: ADAMS STREET
E/W STREET: EAST TOMICHI AVE (US 50)
CITY: GUNNISON
COUNTY: GUNNISON

	ADAMS STREET Southbound					EAST TOMICHI AVE (US 50) Westbound					ADAMS STREET Northbound					EAST TOMICHI AVE (US 50) Eastbound					
Start Time	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r\|} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \mathrm{ht} \end{gathered}$	Ped	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$

Peak Hour From 04:00 PM to 05:45 PM - Peak 1 of 1

Intersecti on Volume	$04: 30$ 18	PM	59	1	79	0	133	6	0	139	4	1	0	0	5	43	149	5	0	197	420
Percent	$\begin{array}{r} 22 . \\ 8 \end{array}$	1.3	$74 .$	1.3		0.0	95 7	4.3	0.0		80.	20.	0.0	0.0		21.	75.	2.5	0.0		
04:30 Volume Peak Factor	4	0	17	0	21	0	38	1	0	39	4	1	0	0	5	10	36	1	0	47	$\begin{aligned} & 112 \\ & 0.938 \end{aligned}$
High Int.	04:30	PM				04:30	PM				04:30					05:15	PM				
Volume	4	0	17	0	21	0	38	1	0	39	4	1	0	0	5	16	41	0	0	57	
Peak Factor					0.94 0					0.89 1					0.25 0					0.86 4	

Location: ADAMS STREET N/O US 50 (TOMICHI AVE) City: GUNNISON County: GUNNISON
Direction: NORTH/SOUTH

COUNTER MEASURES INC.
1889 YORK STREET
DENVER,COLORADO 80206
Site Code: 211103
Station ID: 211103

Start Time	$\begin{gathered} \text { 12-Jan-21 } \\ \text { Tue } \end{gathered}$	NORTHBOU	SOUTHBOU							Total
12:00 AM		0	0							0
01:00		1	0							1
02:00		1	0							1
03:00		1	0							1
04:00		0	0							0
05:00		1	0							1
06:00		4	1							5
07:00		24	1							25
08:00		37	5							42
09:00		56	19							75
10:00		52	34							86
11:00		39	44							83
12:00 PM		60	71							131
01:00		75	32							107
02:00		42	37							79
03:00		40	67							107
04:00		60	50							110
05:00		38	49							87
06:00		27	17							44
07:00		23	10							33
08:00		29	7							36
09:00		10	4							14
10:00		5	4							9
11:00		3	0							3
Total		628	452							1080
Percent		58.1\%	41.9\%							
AM Peak	-	09:00	11:00	-	-	-	-	-	-	10:00
Vol.	-	56	44	-	-	-	-	-	-	86
PM Peak	-	13:00	12:00	-	-	-	-	-	-	12:00
Vol.	-	75	71	-	-	-	-	-	-	131
Grand Total		628	452							1080
Percent		58.1\%	41.9\%							
ADT		ADT 1,080		AADT 1,080						

LEVEL OF SERVICE DEFINITIONS

From Highway Capacity Manual, Transportation Research Board, 2016, 6th Edition
SIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)

LOS	Average Vehicle Delay sec/vehicle	Operational Characteristics
A	<10 seconds	Describes operations with low control delay, up to $10 \mathrm{sec} / \mathrm{veh}$. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
B	10 to 20 seconds	Describes operations with control delay greater than 10 seconds and up to $20 \mathrm{sec} / \mathrm{veh}$. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
c	20 to 35 seconds	Describes operations with control delay greater than 20 and up to $35 \mathrm{sec} / \mathrm{veh}$. These higher delays may result from only fair progression, longer cycle length, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
D	35 to 55 seconds	Describes operations with control delay greater than 35 and up to $55 \mathrm{sec} / \mathrm{veh}$. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	55 to 80 seconds	Describes operations with control delay greater than 55 and up to 80 sec/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.
F	$\begin{gathered} >80 \\ \text { seconds } \end{gathered}$	Describes operations with control delay in excess of 80 sec/veh. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v / c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

LEVEL OF SERVICE DEFINITIONS

From Highway Capacity Manual, Transportation Research Board, 2016, 6th Edition
UNSIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)
Applicable to Two-Way Stop Control, All-Way Stop Control, and Roundabouts

LOS	Average Vehicle Control Delay	Operational Characteristics
A	<10 seconds	Normally, vehicles on the stop-controlled approach only have to wait up to 10 seconds before being able to clear the intersection. Left-turning vehicles on the uncontrolled street do not have to wait to make their turn.
B	10 to 15 seconds	Vehicles on the stop-controlled approach will experience delays before being able to clear the intersection. The delay could be up to 15 seconds. Left-turning vehicles on the uncontrolled street may have to wait to make their turn.
C	15 to 25 seconds	Vehicles on the stop-controlled approach can expect delays in the range of 15 to 25 seconds before clearing the intersection. Motorists may begin to take chances due to the long delays, thereby posing a safety risk to through traffic. Left-turning vehicles on the uncontrolled street will now be required to wait to make their turn causing a queue to be created in the turn lane.
D	25 to 35 seconds	This is the point at which a traffic signal may be warranted for this intersection. The delays for the stop-controlled intersection are not considered to be excessive. The length of the queue may begin to block other public and private access points.
E	35 to 50 seconds	The delays for all critical traffic movements are considered to be unacceptable. The length of the queues for the stop-controlled approaches as well as the left-turn movements are extremely long. There is a high probability that this intersection will meet traffic signal warrants. The ability to install a traffic signal is affected by the location of other existing traffic signals. Consideration may be given to restricting the accesses by eliminating the left-turn movements from and to the stop-controlled approach.
F	>50 seconds	The delay for the critical traffic movements are probably in excess of 100 seconds. The length of the queues are extremely long. Motorists are selecting alternative routes due to the long delays. The only remedy for these long delays is installing a traffic signal or restricting the accesses. The potential for accidents at this intersection are extremely high due to motorist taking more risky chances. If the median permits, motorists begin making two-stage left-turns.

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1			\uparrow
Traffic Vol, veh/h	5	5	65	5	5	35
Future Vol, veh/h	5	5	65	5	5	35
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	6	6	72	6	6	39

Intersection												
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{*}$	㻢			\&			\&	
Traffic Vol, veh/h	75	200	4	1	260	30	1	1	1	20	1	40
Future Vol, veh/h	75	200	4	1	260	30	1	1	1	20	1	40
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	83	222	4	1	289	33	1	1	1	22	1	44

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		\mathbf{F}			\uparrow
Traffic Vol, veh/h	5	10	65	5	10	90
Future Vol, veh/h	5	10	65	5	10	90
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	6	11	72	6	11	100

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	197	75	0	0	78	0
Stage 1	75	-	-	-	-	-
Stage 2	122	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	792	986	-	-	1520	-
Stage 1	948	-	-	-	-	-
Stage 2	903	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	786	986	-	-	1520	-
Mov Cap-2 Maneuver	786	-	-	-	-	-
Stage 1	948	-	-	-	-	-
Stage 2	896	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0.7	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	909	1520	-
HCM Lane V/C Ratio		-	-	0.018	0.007	-
HCM Control Delay (s)		-	-	9	7.4	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	中 ${ }^{\text {a }}$			\$			\$	
Traffic Vol, veh/h	60	270	6	1	315	15	5	1	1	35	1	85
Future Vol, veh/h	60	270	6	1	315	15	5	1	1	35	1	85
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	67	300	7	1	350	17	6	1	1	39	1	94

Intersection												
Int Delay, s/veh 1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {a }}$			\&			\&	
Traffic Vol, veh/h	76	350	4	1	315	31	1	1	1	21	1	41
Future Vol, veh/h	76	350	4	1	315	31	1	1	1	21	1	41
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	84	389	4	1	350	34	1	1	1	23	1	46

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		\mathbf{F}			\uparrow
Traffic Vol, veh/h	5	10	66	5	10	93
Future Vol, veh/h	5	10	66	5	10	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	6	11	73	6	11	103

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	虫		${ }^{*}$	㻢			\&			\&	
Traffic Vol, veh/h	61	315	6	1	420	15	5	1	1	36	1	87
Future Vol, veh/h	61	315	6	1	420	15	5	1	1	36	1	87
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	68	350	7	1	467	17	6	1	1	40	1	97

Major/Minor	Major1	Major2						Minor1		
Conflicting Flow All	0	0	417	0	854	386				
Stage 1	-	-	-	-	386	-				
Stage 2	-	-	-	-	468	-				
Critical Hdwy	-	-	4.12	-	6.42	6.22				
Critical Hdwy Stg 1	-	-	-	-	5.42	-				
Critical Hdwy Stg 2	-	-	-	-	5.42	-				
Follow-up Hdwy	-	-	2.218	-	3.518	3.318				
Pot Cap-1 Maneuver	-	-	1142	-	329	662				
Stage 1	-	-	-	-	687	-				
Stage 2	-	-	-	-	630	-				
Platoon blocked, \%	-	-		-						
Mov Cap-1 Maneuver	-	-	1142	-	329	662				
Mov Cap-2 Maneuver	-	-	-	-	329	-				
Stage 1	-	-	-	-	687	-				
Stage 2	-	-	-	-	629	-				

Approach	EB	WB	NB
HCM Control Delay, s	0	0	17.4
HCM LOS		C	

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBT	EBR	WBL	WBT
Capacity (veh/h)	329	662	-	-1142	-	
HCM Lane V/C Ratio	0.142	0.003	-	-0.001	-	
HCM Control Delay (s)	17.7	10.5	-	-	8.2	-
HCM Lane LOS	C	B	-	-	A	-
HCM 95th \%tile Q(veh)	0.5	0	-	-	0	-

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	10	5	69	7	5	42
Future Vol, veh/h	10	5	69	7	5	42
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	11	6	77	8	6	47

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	i	4	$\mathbf{4}$	$\mathbf{7}$		$\mathbf{7}$
Traffic Vol, veh/h	40	423	448	2	0	95
Future Vol, veh/h	40	423	448	2	0	95
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Free
Storage Length	300	-	-	300	-	0
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	44	470	498	2	0	106

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\mathbf{F}			$\mathbf{\uparrow}$
Traffic Vol, veh/h	9	10	72	11	10	97
Future Vol, veh/h	9	10	72	11	10	97
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	10	11	80	12	11	108

Intersection												
Int Delay, s/veh	2.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中 ${ }^{\text {a }}$		${ }^{*}$	中 ${ }^{\text {a }}$			\uparrow			\&	
Traffic Vol, veh/h	73	527	6	1	560	15	5	1	1	36	1	95
Future Vol, veh/h	73	527	6	1	560	15	5	1	1	36	1	95
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	81	586	7	1	622	17	6	1	1	40	1	106

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\mathbf{a}	$\mathbf{4}$	个	\mathbf{F}		$\mathbf{7}$
Traffic Vol, veh/h	97	480	525	6	0	65
Future Vol, veh/h	97	480	525	6	0	65
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	Free
Storage Length	300	-	-	300	-	0
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	108	533	583	7	0	72

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	10		\mathbf{T}			\uparrow
Traffic Vol, veh/h	10	10	70	10	10	40
Future Vol, veh/h	10	10	70	10	10	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	11	11	78	11	11	44

Intersection												
Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	虫		${ }^{7}$	中 ${ }^{\text {c }}$			\uparrow			\&	
Traffic Vol, veh/h	80	555	5	2	655	35	2	2	2	25	2	45
Future Vol, veh/h	80	555	5	2	655	35	2	2	2	25	2	45
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	89	617	6	2	728	39	2	2	2	28	2	50

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$		个		$\mathbf{7}$
Traffic Vol, veh/h	562	24	0	689	0	0
Future Vol, veh/h	562	24	0	689	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	300	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	624	27	0	766	0	0

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{1}$	4	「	${ }^{*}$	\uparrow		${ }^{1 /}$	\uparrow	
Traffic Vol, veh/h	30	485	47	4	575	2	24	1	1	5	1	90
Future Vol, veh/h	30	485	47	4	575	2	24	1	1	5	1	90
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	300	-	300	300	-	300	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	33	539	52	4	639	2	27	1	1	6	1	100

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	10	15	70	10	15	95
Future Vol, veh/h	10	15	70	10	15	95
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	11	17	78	11	17	106

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	224	84	0	0	89	0
Stage 1	84	-	-	-	-	-
Stage 2	140	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	764	975	-	-	1506	-
Stage 1	939	-	-	-	-	-
Stage 2	887	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	755	975	-	-	1506	-
Mov Cap-2 Maneuver	755	-	-	-	-	-
Stage 1	939	-	-	-	-	-
Stage 2	876	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.3		0		1	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-		873	1506	-
HCM Lane V/C Ratio		-	-	0.032	0.011	-
HCM Control Delay (s)		-	-	9.3	7.4	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	\mathbf{r}		个		$\mathbf{7}$
Traffic Vol, veh/h	675	39	0	684	0	3
Future Vol, veh/h	675	39	0	684	0	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	300	-	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	750	43	0	760	0	3

Approach	EB	WB	NB	SB
HCM Control Delay, s	1.3	0	254.5	15.7
HCM LOS			F	C

Minor Lane/Major Mvmt	NBLn1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2		
Capacity (veh/h)	84	218	977	-	-	938	-	-	98
451									
HCM Lane V/C Ratio	1.243	0.025	0.108	-	-0.004	-	-	0.034	0.14
HCM Control Delay (s)	266.9	21.9	9.1	-	-	8.9	-	-	43
HCM Lane LOS	F	C	A	-	-	A	-	-	E
HCM 95th \%tile Q(veh)	7.7	0.1	0.4	-	-	0	-	-	0.1
H			0.5						

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	的			\uparrow			\&	
Traffic Vol, veh/h	84	638	5	2	843	35	2	2	2	25	2	55
Future Vol, veh/h	84	638	5	2	843	35	2	2	2	25	2	55
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Frest	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	93	709	6	2	937	39	2	2	2	28	2	61

Intersection												
Int Delay, s/veh	5.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{1}$	4	「	${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	68	485	52	4	578	4	26	2	1	15	2	180
Future Vol, veh/h	68	485	52	4	578	4	26	2	1	15	2	180
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	300	-	300	300	-	300	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	76	539	58	4	642	4	29	2	1	17	2	200

Intersection												
Int Delay, s/veh	8.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	虫		${ }^{1}$	中 ${ }^{\text {a }}$			\$			\$	
Traffic Vol, veh/h	77	877	10	2	790	20	10	2	2	40	2	98
Future Vol, veh/h	77	877	10	2	790	20	10	2	2	40	2	98
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	90	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	86	974	11	2	878	22	11	2	2	44	2	109

Intersection												
Int Delay，s／veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「゙		个	「			「＇			「＇
Traffic Vol，veh／h	97	790	39	0	759	6	0	0	3	0	0	65
Future Vol，veh／h	97	790	39	0	759	6	0	0	3	0	0	65
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	－	－	None	－	－	None	－	－	None	－	－	Free
Storage Length	300	－	300	－	－	300	－	－	0	－	－	0
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	108	878	43	0	843	7	0	0	3	0	0	72

Intersection												
Int Delay, s/veh	75.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	4	「	${ }^{1}$	4	「	${ }^{1}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	201	555	37	3	539	11	104	4	4	10	4	120
Future Vol, veh/h	201	555	37	3	539	11	104	4	4	10	4	120
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	300	-	300	300	-	300	100	-	-	100	-	-
Veh in Median Storage,	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	223	617	41	3	599	12	116	4	4	11	4	133

Major/Minor	Major1			Major2			Minor1			Minor2			
Conflicting Flow All	611	0	0	658	0	0	1743	1680	617	1693	1709	599	
Stage 1	-	-	-	-	-	-	1063	1063	-	605	605	-	
Stage 2	-	-	-	-	-	-	680	617	-	1088	1104	-	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	968	-	-	930	-	-	~ 68	95	490	74	91	502	
Stage 1	-	-	-	-	-	-	270	300	-	485	487	-	
Stage 2	-	-	-	-	-	-	441	481	-	261	287	-	
Platoon blocked, \%		-	-		-	-							
Mov Cap-1 Maneuver	968	-	-	930	-	-	~ 39	73	490	57	70	502	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 39	73	-	57	70	-	
Stage 1	-	-	-	-	-	-	208	231	-	373	486	-	
Stage 2	-	-	-	-	-	-	320	480	-	195	221	-	

Approach	EB	WB	NB	SB
HCM Control Delay, s	2.5	0	$\$ 1026.8$	22.6
HCM LOS			F	C

Minor Lane/Major Mvmt	NBLn1 NBLn2		EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	39	127	968	-	-	930	-	-	57
HCM Lane V/C Ratio	2.963	0.07	0.231	-	-	419			
HCM Control Delay (s)	$\$ 1103$	35.5	9.8	-	-	8.9	-	-0.195	0.329
HCM Lane LOS	F	E	A	-	-	A	-	-	F
HCM 95th \%tile Q(veh)	12.9	0.2	0.9	-	-	0	-	-	0.7

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

	4		6	\leftarrow	4		-	\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	${ }^{7}$	中 ${ }^{\text {P }}$	${ }^{7}$	中 ${ }^{\text {P }}$		\&		
Traffic Volume (vph)	84	638	2	843	2	2	25	2
Future Volume (vph)	84	638	2	843	2	2	25	2
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases	7	4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	7	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	23.0	9.5	23.0	23.0	23.0	23.0	23.0
Total Split (s)	12.0	53.0	12.0	53.0	25.0	25.0	25.0	25.0
Total Split (\%)	13.3\%	58.9\%	13.3\%	58.9\%	27.8\%	27.8\%	27.8\%	27.8\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.5	1.0	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time (s)	4.5	5.0	4.5	5.0		5.0		5.0
Lead/Lag	Lead	Lag	Lead	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes				
Recall Mode	None	C-Max	None	C-Max	None	None	None	None
Act Effct Green (s)	74.3	73.3	70.2	66.3		7.8		7.8
Actuated g/C Ratio	0.83	0.81	0.78	0.74		0.09		0.09
v/c Ratio	0.19	0.25	0.00	0.38		0.04		0.49
Control Delay	3.0	3.5	2.0	4.3		31.4		25.2
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0
Total Delay	3.0	3.5	2.0	4.3		31.4		25.2
LOS	A	A	A	A		C		C
Approach Delay		3.4		4.3		31.4		25.2
Approach LOS		A		A		C		C
Intersection Summary								

Cycle Length: 90

Actuated Cycle Length: 90
Offset: 42 (47\%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.49
Intersection Signal Delay: $5.0 \quad$ Intersection LOS: A
Intersection Capacity Utilization 47.4\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 2: Adams Street \& E. Tomichi Avenue

	4						4	\dagger		\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	7	\uparrow	「	\%	\uparrow	「	\%	\uparrow	\%	\uparrow
Traffic Volume (vph)	68	485	52	,	578	4	26	2	15	2
Future Volume (vph)	68	485	52	4	578	4	26	2	15	2
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
Protected Phases	7	4		3	8			2		6
Permitted Phases	4		4	8		8	2		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6
Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	23.0	23.0	10.0	23.0	23.0	23.0	23.0	23.0	23.0
Total Split (s)	12.0	53.0	53.0	12.0	53.0	53.0	25.0	25.0	25.0	25.0
Total Split (\%)	13.3\%	58.9\%	58.9\%	13.3\%	58.9\%	58.9\%	27.8\%	27.8\%	27.8\%	27.8\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	70.8	69.3	69.3	66.6	62.2	62.2	8.6	8.6	8.6	8.6
Actuated g/C Ratio	0.79	0.77	0.77	0.74	0.69	0.69	0.10	0.10	0.10	0.10
v/c Ratio	0.14	0.38	0.05	0.01	0.50	0.00	0.35	0.02	0.13	0.61
Control Delay	2.7	7.0	2.6	2.8	9.5	0.0	48.8	31.0	37.6	14.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	2.7	7.0	2.6	2.8	9.5	0.0	48.8	31.0	37.6	14.2
LOS	A	A	A	A	A	A	D	C	D	B
Approach Delay		6.1			9.4			47.2		16.0
Approach LOS		A			A			D		B
Intersection Summary										

Cycle Length: 90

Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 4:EBTL and 8:WBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 9.7 Intersection LOS: A
Intersection Capacity Utilization 66.7\%
ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 4: Site Access \& E. Tomichi Avenue

	4	\rightarrow	$\%$		4		\pm	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	${ }^{7}$	㻢	${ }^{1}$	中 ${ }^{\text {P }}$		4		
Traffic Volume (vph)	77	877	2	790	10	2	40	2
Future Volume (vph)	77	877	2	790	10	2	40	2
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases	7	4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	7	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.5	23.0	9.5	23.0	23.0	23.0	23.0	23.0
Total Split (s)	12.0	53.0	12.0	53.0	25.0	25.0	25.0	25.0
Total Split (\%)	13.3\%	58.9\%	13.3\%	58.9\%	27.8\%	27.8\%	27.8\%	27.8\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.5	1.0	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time (s)	4.5	5.0	4.5	5.0		5.0		5.0
Lead/Lag	Lead	Lag	Lead	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes				
Recall Mode	None	C-Max	None	C-Max	None	None	None	None
Act Effct Green (s)	71.1	69.0	66.9	62.0		9.0		9.0
Actuated g/C Ratio	0.79	0.77	0.74	0.69		0.10		0.10
v/c Ratio	0.18	0.36	0.00	0.37		0.13		0.62
Control Delay	3.4	4.8	4.0	6.7		33.9		24.6
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0
Total Delay	3.4	4.8	4.0	6.7		33.9		24.6
LOS	A	A	A	A		C		C
Approach Delay		4.7		6.7		33.9		24.6
Approach LOS		A		A		C		C
Intersection Summary								

Cycle Length: 90

Actuated Cycle Length: 90
Offset: 42 (47\%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.62
Intersection Signal Delay: $7.2 \quad$ Intersection LOS: A
Intersection Capacity Utilization 49.0\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 2: Adams Street \& E. Tomichi Avenue

	4						4	\dagger		\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	\%	\uparrow	「	${ }_{7}$	\uparrow	「	\%	\hat{F}	\%	$\hat{1}$
Traffic Volume (vph)	201	555	37	,	539	11	104	4	10	4
Future Volume (vph)	201	555	37	3	539	11	104	4	10	4
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	NA
Protected Phases	7	4		3	8			2		6
Permitted Phases	4		4	8		8	2		6	
Detector Phase	7	4	4	3	8	8	2	2	6	6
Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	23.0	23.0	10.0	23.0	23.0	23.0	23.0	23.0	23.0
Total Split (s)	12.0	53.0	53.0	12.0	53.0	53.0	25.0	25.0	25.0	25.0
Total Split (\%)	13.3\%	58.9\%	58.9\%	13.3\%	58.9\%	58.9\%	27.8\%	27.8\%	27.8\%	27.8\%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag				
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes				
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None
Act Effct Green (s)	65.4	64.0	64.0	58.6	53.0	53.0	13.9	13.9	13.9	13.9
Actuated g/C Ratio	0.73	0.71	0.71	0.65	0.59	0.59	0.15	0.15	0.15	0.15
v/c Ratio	0.43	0.47	0.04	0.01	0.55	0.01	0.67	0.03	0.05	0.38
Control Delay	9.0	5.9	0.1	5.0	14.7	0.0	53.4	22.9	29.9	9.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.0	5.9	0.1	5.0	14.7	0.0	53.4	22.9	29.9	9.4
LOS	A	A	A	A	B	A	D	C	C	A
Approach Delay		6.4			14.3			51.4		11.0
Approach LOS		A			B			D		B
Intersection Summary										

Cycle Length: 90

Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 4:EBTL and 8:WBTL, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.67
Intersection Signal Delay: $12.7 \quad$ Intersection LOS: B
Intersection Capacity Utilization 69.6\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 4: Site Access \& E. Tomichi Avenue

(303) 333-1105

FAX (303) 333-1107
E-mail: Isc@Iscdenver.com

August 28, 2020
Mr. Byron Chrisman
Gunnison Valley Properties, LLC
864 W. South Boulder Road
Louisville, CO 80027

Re: Gunnison Rising Government
Campus Subdivision
Gunnison, CO
LSC \#191121

Dear Mr. Chrisman:
In response to your request, LSC Transportation Consultants, Inc. has prepared this traffic impact analysis (CDOT Level III traffic study) for the proposed Gunnison Rising Government Campus Subdivision. As shown on Figure 1, the site is located south of US Highway (US) 50 near the intersection with Ute Lane West (CR 72) in Gunnison, Colorado.

REPORT CONTENTS

The report contains the following: the existing roadway and traffic conditions in the vicinity of the site including the lane geometries, traffic controls, etc.; the existing weekday peak-hour traffic volumes; the existing daily traffic volumes in the area; the typical weekday site-generated traffic volume projections for the site; the short-term and long-term assignment of the projected traffic volumes to the area roadways; the projected short-term and long-term background and resulting total traffic volumes on the area roadways; the site's projected traffic impacts; and any recommended roadway improvements to mitigate the site's traffic impacts. The scope of work is consistent with the attached TIS Methodology Form approved by CDOT with the exception of a few proposed land use details that were modified throughout the process.

LAND USE AND ACCESS

The site is proposed to include a government office campus with about 68,000 square feet of office/light industrial space, a 5,000 square-foot convenience/gas store, and an RV Campground with about 300 sites. Access is proposed to US 50 aligning with Ute Lane West (CR 72) as shown in the site plan in Figure 2. Emergency only access is proposed to US 50 aligning with Ute Lane East (CR 72). A preliminary plat for the government campus portion of the site is attached for reference.

ROADWAY AND TRAFFIC CONDITIONS

Area Roadways

The major roadways in the site's vicinity are shown on Figure 1 and are described below.

- US Highway $\mathbf{5 0}$ (US 50) is an east-west, two-lane US highway north of the site. It is designated R-A (Regional Highway) by CDOT per the attached CDOT Straight Line Diagram. The intersection with Ute Lane West (CR 72) is stop-sign controlled and shown as a full movement intersection in the US 50 Access Control Plan (ACP). An excerpt from the ACP is attached for reference. The posted speed limit in the vicinity of the site is 65 mph .
- Ute Lane West (CR 72) is a two-lane county roadway north of the site. The intersection with US 50 is stop-sign controlled. The posted speed limit in the vicinity of the site is 25 mph .

Existing Sight Distance

There is very good sight distance in each direction of US 50 from the proposed access location aligning with Ute Lane West (CR 72).

Existing Traffic Conditions

Figure 3a shows the existing weekday traffic volumes, existing lane geometry and the existing traffic controls in the vicinity of the site. The weekday peak-hour traffic volumes and average daily traffic volumes are from the attached traffic counts conducted by Counter Measures in February, 2020.

Figure 3b shows the estimated July traffic volumes based on a seasonal adjustment factor of 2.27 for US 50 traffic and a conservative 1.50 factor for Ute Lane West (CR 72).

2024 and 2040 Background Traffic

Figure 4 shows the estimated 2024 background traffic and Figure 5 shows the estimated 2040 background traffic. The background traffic volumes on SH 50 assume an annual growth rate of about 0.2 percent based on CDOT's 20-year factor of 1.04 per the approved TIS methodology. Little or no growth was assumed for side street traffic as any future development will be required to prepare its own traffic impact analysis.

Existing, 2024, and 2040 Background Levels of Service

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay and LOS F is indicative of a high level of congestion or delay. Attached are specific level of service definitions for signalized and unsignalized intersections.

The intersections in the study area were analyzed to determine the existing, 2024, and 2040 background levels of service using Synchro. Table 1 shows the level of service analysis results. The level of service reports are attached.

- US 50/Ute Lane West (CR 72): All movements at this unsignalized intersection currently operate at LOS "B" or better during both morning and afternoon peak-hours and are expected to do so through 2040.

TRIP GENERATION

Table 2 shows the estimated average daily, weekday morning peak-hour, and weekday afternoon peak-hour trip generation potential for the proposed site based on the rates from Trip Generation, $10^{\text {th }}$ Edition, 2017 by the Institute of Transportation Engineers (ITE).

By 2024, the site is projected to generate about 2,365 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 155 vehicles would enter and about 118 vehicles would exit the site. During the afternoon peakhour, which generally occurs for one hour between 4:00 and 6:00 p.m., about 131 vehicles would enter and about 152 vehicles would exit.

At buildout, the site is projected to generate about 3,252 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 231 vehicles would enter and about 173 vehicles would exit the site. During the afternoon peakhour, which generally occurs for one hour between 4:00 and 6:00 p.m., about 192 vehicles would enter and about 212 vehicles would exit.

TRIP DISTRIBUTION

Figure 6 shows the estimated directional distribution of the site-generated traffic volumes on the area roadways. The estimates were based on the location of the site with respect to the regional population, employment, and activity centers; the site's proposed land use; and on the approved TIS methodology form. The RV Campground was added after the form was approved the assumed directional distribution for the campground is half to the west and half to the east.

TRIP ASSIGNMENT

Figure 7 shows the assignment of 2024 site-generated traffic volumes for the site based on the directional distribution percentages (from Figure 6) and the 2024 trip generation estimate (from Table 2).

Figure 8a shows the assignment of 2040 government-campus site-generated traffic volumes for the site based on the directional distribution percentages (from Figure 6) and the 2040 government campus trip generation estimate (from Table 2).

Figure 8 b shows the assignment of 2040 RV Campground site-generated traffic volumes for the site based on the directional distribution percentages (from Figure 6) and the 2040 RV Campground trip generation estimate (from Table 2).

2024 AND 2040 TOTAL TRAFFIC

Figure 9 shows the 2024 total traffic which is the sum of the 2024 background traffic volumes (from Figure 4) and the 2024 site-generated traffic volumes (from Figure 7). Figure 9 also shows the recommended 2024 lane geometry and traffic control.

Figure 10 shows the 2040 total traffic which is the sum of the 2040 background traffic volumes (from Figure 5) and the 2040 site-generated traffic volumes (from Figures 8a and 8b). Figure 10 also shows the recommended 2040 lane geometry and traffic control.

PROJECTED LEVELS OF SERVICE

The intersections in the study area were analyzed as appropriate to determine the 2024 and 2040 total levels of service. Table 1 shows the level of service analysis results. The level of service reports are attached.

- US 50/Ute Lane West (SH 72): All movements at this stop-sign controlled intersection are expected to operate at LOS "D" or better in both peak-hours through 2024. The northbound left/through movement is expected to operate at LOS " F " in the 2040 afternoon peak-hour at site buildout with the recommended improvements. The intersection would operate at an overall LOS "B" or better through 2040 with traffic signal control.

TRAFFIC SIGNAL WARRANT ANALYSIS

Figures 11a and 11b show the traffic volumes for 2024 and 2040 total traffic plotted on a fourhour and peak-hour traffic signal warrant chart. Neither warrant is expected to be met with the land uses proposed through 2024 but both will likely be met by 2040 with full site buildout. Per the State Highway Access Code, a traffic signal warrant would need to be met to allow traffic signal installation in the future.

95^{TH} PERCENTILE QUEUE LENGTHS

Table 3 shows the estimated $95^{\text {th }}$ percentile queue lengths for the signalized scenarios. The recommended northbound right-turn lane should be about 200 feet to avoid being blocked by queued vehicles waiting to turn left or proceed straight across US 50.

ACCESS PERMIT APPLICATION

An access permit application should be made to CDOT for the proposed uses through 2024 to avoid needing to permit a traffic signal - the traffic volumes for this scenario are shown in Figures 7 and 9 .

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

1. By 2024, the site is projected to generate about 2,365 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, about 155 vehicles would enter and about 118 vehicles would exit the
site. During the afternoon peak-hour, about 131 vehicles would enter and about 152 vehicles would exit.
2. At buildout, the site is projected to generate about 3,252 external vehicle-trips on the average weekday, with about half entering and half exiting during a 24 -hour period. During the morning peak-hour, about 231 vehicles would enter and about 173 vehicles would exit the site. During the afternoon peak-hour, about 192 vehicles would enter and about 212 vehicles would exit.

Projected Levels of Service

3. All movements at the unsignalized US 50/Ute Lane West (CR 72) intersection are expected to operate at LOS "D" or better through 2024. The northbound left/through movement is expected to operate at LOS "F" in the 2040 afternoon peak-hour at site buildout with the recommended improvements. The intersection will operate at an overall LOS "B" or better through 2040 with traffic signal control.

Conclusions

4. The impact of the Gunnison Rising Government Campus Subdivision can be accommodated by the existing and proposed roadway network with the following recommendations.

Recommendations

5. The applicant should construct an eastbound right-turn deceleration lane on US 50 approaching the site access intersection. An appropriate length for the 65 mph posted speed limit would be a 500 -foot lane plus a 300 -foot transition taper. This lane will be needed by 2024.
6. The applicant should stripe a westbound left-turn deceleration lane on US 50 approaching the site access intersection. An appropriate length for the 65 mph posted speed limit would be 575 feet (500 feet for deceleration plus 75 feet for vehicle storage) and a 300-foot transition taper. This lane will be needed by 2024.
7. The applicant should construct a northbound to eastbound acceleration lane on US 50 heading east from the site access intersection. An appropriate length for the 65 mph posted speed limit would be 1,080 feet plus a 300 -foot transition taper. This lane is recommended by 2024.
8. The applicant should construct a dedicated northbound right-turn lane along with a shared through/left lane. The length of the right-turn lane should be about 200 feet to avoid being blocked by queued vehicles waiting to turn left or proceed straight across US 50.
9. Traffic signal control will not be warranted by the land uses through 2024 but will likely be by 2040 if the site reaches buildout.
10. The applicant should submit an access permit application for the land uses proposed through 2024 to avoid needing to permit a future traffic signal. The impacts through 2024 are shown in Figures 7 and 9.

We trust our findings will assist you in gaining approval of the proposed Gunnison Rising Government Campus Subdivision. Please contact me if you have any questions or need further assistance.

Sincerely,

Enclosures: Tables 1-3
Figures 1-11b
Approved TIS Methodology Form
Preliminary Plat for Government Campus Portion of the site
CDOT Straight Line Diagram
CDOT US 50 Access Control Plan Excerpt
Traffic Count Reports
Level of Service Definitions
Level of Service Reports
Queuing Reports
W: \LSC \backslash Projects $\backslash 2019 \backslash 191121$-GunnisonRisingGovernmentCampusSubdivision \backslash Aug-2020 \backslash GunnisonRising-082820.wpd

Figure 2
Site Plan

COLORADO

Department of Transportation
Region 3

Transportation Impact Study
 Methodology Form

Prior to starting a traffic impact study, a Methodology Form must be submitted for review and signed by the Region 3 Access Engineer. It shall be included as part of the study. Form submitted to CDOT 02/05/2020.

CONTACT INFORMATION

Consultant:	Name:
LSC TransDortation Consultants. Inc. (Chris McGranahan)	
	Telephone:
Email $:$	chris@lsctrans.com and Isc@lscdenver.com
Developer/Owner Name:	Gunnison Valley Partners

PROJ ECT INFORMATION

Project Name	Gunnison Rising
Project Location	East of Gunnison, CO on both sides of US 50
Project Description (Attached proposed site plan)	See attached site plan
State Highway	US 50
County	Gunnison
Mile Post	Between 158 and 159
Posted Speed Limit	55 mph approaching from east and 65 mph approaching from west

TIS ASSUMPTIONS

Study Years	Current Year: 2020	Buildout Year: 2025		Long Term Year: 2040
Traffic Assessment Level (Provide justification)	Level 3 Traffic Study			
Study Intersections	1. US 50/Adams Street		6.	
	2. Adams Street/College Avenue		7.	
	3. Proposed Access Point to US 50		8.	
	4.		9.	
	5.		10.	
Future Growth Rate	\square OTIS	\square Regional TDM		\square Other
Seasonal Adjustment Factor	Traffic counts will be modified using both a seasonal and pandemic adjustment.			

COLORADO
Department of Transportation
Region 3
ASSUMPTIONS CONTINUED

CDOT INTERNAL USE ONLY

Review Comments

Revise and Resubmit

1	$93,225 / 2.14 \mathrm{ac}$	$14,500-29,000$
2	$95,400 / 2.19 \mathrm{ac}$	$15,500-31,000$
3	$190,800 / 4.38 \mathrm{ac}$	$32,000-64,000$
4	$125,900 / 2.89 \mathrm{ac}$	$21,000-42,000$
5	$119,800 / 2.75 \mathrm{ac}$	$22,000-44,000$
Total	$\mathbf{6 2 5 , 1 2 5} / \mathbf{1 4 . 3 5} \mathbf{~ a c}$	$\mathbf{1 0 5 , 0 0 0}-\mathbf{2 1 0 , 0 0 0}$

Route 050A From 158 to 161

It may appear that information is missing from the straight line diagram. If so, reduce the number of miles/page and re-submit the request.

COUNTER MEASURES INC.
1889 YORK STREET
N/S STREET: UTE LANE
DENVER.COLORADO 303-333-7409
E/W STREET: HWY-50 CITY: GUNNISON

File Name : UTEHWY50
Site Code : 00000015
Start Date: 2/18/2020 Page No : 1
Groups Printed- VEHICLES

	UTE LANE Southbound				HWY-50 Westbound				Northbound				HWY-50 Eastbound				
Start Time	Left	Thru	Right	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	0	4	0	0	10	0	0	0	0	0	0	0	16	0	0	30
06:45 AM	0	0	5	0	0	19	0	0	0	0	0	0	1	16	0	0	41
Total	0	0	9	0	0	29	0	0	0	0	0	0	1	32	0	0	71

| $07: 00$ AM | 0 | 0 | 2 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 32 |
| ---: | :--- |
| $07: 15$ AM | 0 | 0 | 5 | 0 | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 38 |
| $07: 30$ AM | 0 | 0 | 6 | 0 | 0 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 50 |
| $07: 45$ AM | 1 | 0 | 10 | 0 | 0 | 34 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 24 | 0 | 0 | 73 |
| Total | 1 | 0 | 23 | 0 | 0 | 98 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 67 | 0 | 0 | 193 |

08:00 AM	0	0	1	0	0	28	0	0	0	0	0	0	0	22	0	0	51
08:15 AM	0	0	3	0	0	29	0	0	0	0	0	0	2	26	0	0	60
Total	0	0	4	0	0	57	0	0	0	0	0	0	2	48	0	0	111

04:00 PM	1	0	4	0	0	29	0	0	0	0	0	0	2	34	0	0	70
04:15 PM	0	0	2	0	0	36	0	0	0	0	0	0	2	21	0	0	61
04:30 PM	0	0	2	0	0	28	0	0	0	0	0	0	1	39	0	0	70
04:45 PM	1	0	1	0	0	46	0	0	0	0	0	0	6	33	0	0	87
Total	2	0	9	0	0	139	0	0	0	0	0	0	11	127	0	0	288

| $05: 00 ~ P M ~$ | 0 | 0 | 3 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 34 | 0 | 0 | 69 |
| ---: |
| $05: 15 ~ P M ~$ | 1 | 0 | 4 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 29 | 0 | 0 | 57 |
| $05: 30 ~ P M ~$ | 0 | 0 | 3 | 0 | 0 | 25 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 29 | 0 | 0 | 59 |
| $05: 45$ PM | 0 | 0 | 5 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 33 | 0 | 0 | 69 |
| Total | 1 | 0 | 15 | 0 | 0 | 94 | 1 | 0 | 0 | 0 | 0 | 0 | 18 | 125 | 0 | 0 | 254 |

| Grand Total | 4 | 0 | 60 | 0 | 0 | 417 | 4 | 0 | 0 | 0 | 0 | 0 | 33 | 399 | 0 | 0 | 917 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Apprch \% | 6.3 | 0.0 | 93.8 | 0.0 | 0.0 | 99.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6 | 92.4 | 0.0 | 0.0 | |
| Total \% | 0.4 | 0.0 | 6.5 | 0.0 | 0.0 | 45.5 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 | 43.5 | 0.0 | 0.0 | |

COUNTER MEASURES INC.

1889 YORK STREET
N/S STREET: UTE LANE
DENVER.COLORADO
File Name : UTEHWY50
E/W STREET: HWY-50
CITY: GUNNISON 303-333-7409

Site Code : 00000015
Start Date: 2/18/2020
Page No : 2

	UTE LANE Southbound					HWY-50 Westbound					Northbound					HWY-50 Eastbound					
Start Time	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	$\begin{gathered} \text { Rig } \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Left	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Int. Total

Peak Hour From 06:30 AM to 08:30 AM - Peak 1 of 1

COUNTER MEASURES INC.

1889 YORK STREET
N/S STREET: UTE LANE
DENVER.COLORADO
File Name : UTEHWY50
E/W STREET: HWY-50
CITY: GUNNISON
303-333-7409
Site Code : 00000015
Start Date: 2/18/2020
Page No : 2

LEVEL OF SERVICE DEFINITIONS

From Highway Capacity Manual, Transportation Research Board, 2016, 6th Edition
SIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)

LOS	Average Vehicle Delay sec/vehicle	Operational Characteristics
A	<10 seconds	Describes operations with low control delay, up to $10 \mathrm{sec} / \mathrm{veh}$. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
B	10 to 20 seconds	Describes operations with control delay greater than 10 seconds and up to $20 \mathrm{sec} / \mathrm{veh}$. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
c	20 to 35 seconds	Describes operations with control delay greater than 20 and up to $35 \mathrm{sec} / \mathrm{veh}$. These higher delays may result from only fair progression, longer cycle length, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.
D	35 to 55 seconds	Describes operations with control delay greater than 35 and up to $55 \mathrm{sec} / \mathrm{veh}$. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	55 to 80 seconds	Describes operations with control delay greater than 55 and up to 80 sec/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.
F	$\begin{gathered} >80 \\ \text { seconds } \end{gathered}$	Describes operations with control delay in excess of 80 sec/veh. This level, considered unacceptable to most drivers, often occurs with over-saturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v / c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

LEVEL OF SERVICE DEFINITIONS

From Highway Capacity Manual, Transportation Research Board, 2016, 6th Edition
UNSIGNALIZED INTERSECTION LEVEL OF SERVICE (LOS)
Applicable to Two-Way Stop Control, All-Way Stop Control, and Roundabouts

LOS	Average Vehicle Control Delay	Operational Characteristics
A	<10 seconds	Normally, vehicles on the stop-controlled approach only have to wait up to 10 seconds before being able to clear the intersection. Left-turning vehicles on the uncontrolled street do not have to wait to make their turn.
B	10 to 15 seconds	Vehicles on the stop-controlled approach will experience delays before being able to clear the intersection. The delay could be up to 15 seconds. Left-turning vehicles on the uncontrolled street may have to wait to make their turn.
C	15 to 25 seconds	Vehicles on the stop-controlled approach can expect delays in the range of 15 to 25 seconds before clearing the intersection. Motorists may begin to take chances due to the long delays, thereby posing a safety risk to through traffic. Left-turning vehicles on the uncontrolled street will now be required to wait to make their turn causing a queue to be created in the turn lane.
D	25 to 35 seconds	This is the point at which a traffic signal may be warranted for this intersection. The delays for the stop-controlled intersection are not considered to be excessive. The length of the queue may begin to block other public and private access points.
E	35 to 50 seconds	The delays for all critical traffic movements are considered to be unacceptable. The length of the queues for the stop-controlled approaches as well as the left-turn movements are extremely long. There is a high probability that this intersection will meet traffic signal warrants. The ability to install a traffic signal is affected by the location of other existing traffic signals. Consideration may be given to restricting the accesses by eliminating the left-turn movements from and to the stop-controlled approach.
F	>50 seconds	The delay for the critical traffic movements are probably in excess of 100 seconds. The length of the queues are extremely long. Motorists are selecting alternative routes due to the long delays. The only remedy for these long delays is installing a traffic signal or restricting the accesses. The potential for accidents at this intersection are extremely high due to motorist taking more risky chances. If the median permits, motorists begin making two-stage left-turns.

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	312	0	-	0	575	309	
Stage 1	-	-	-	-	309	-	
Stage 2	-	-	-	-	266	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-3.518	3.318		
Pot Cap-1 Maneuver	1248	-	-	-	480	731	
\quad Stage 1	-	-	-	-	745	-	
Stage 2	-	-	-	-	779	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1248	-	-	-	478	731	
Mov Cap-2 Maneuver	-	-	-	-	564	-	
Stage 1	-	-	-	-	741	-	
Stage 2	-	-	-	-	779	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	10.3
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1248	-	-	-718
HCM Lane V/C Ratio	0.005	-	-	-0.053
HCM Control Delay (s)	7.9	-	-	-10.3
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	368	0	-	0	743	368
Stage 1	-	-	-	-	368	-
Stage 2	-	-	-	-	375	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1191	-	-	-	383	677
\quad Stage 1	-	-	-	-	700	-
Stage 2	-	-	-	-	695	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1191	-	-	-	376	677
Mov Cap-2 Maneuver	-	-	-	-	487	-
Stage 1	-	-	-	-	688	-
Stage 2	-	-	-	-	695	-

Approach	EB	WB	SB
HCM Control Delay, s	0.5	0	10.9
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1191	-	-	-	633
HCM Lane V/C Ratio	0.017	-	-	-0.031	
HCM Control Delay (s)	8.1	-	-	-10.9	
HCM Lane LOS	A	-	-	-	B
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.1

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	314	0	-	0	579	311
Stage 1	-	-	-	-	311	-
Stage 2	-	-	-	-	268	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1246	-	-	-	477	729
\quad Stage 1	-	-	-	-	743	-
Stage 2	-	-	-	-	777	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1246	-	-	-	475	729
Mov Cap-2 Maneuver	-	-	-	-	562	-
Stage 1	-	-	-	-	739	-
Stage 2	-	-	-	-	777	-

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	10.3
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1246	-	-	-716
HCM Lane V/C Ratio	0.005	-	-	-0.053
HCM Control Delay (s)	7.9	-	-	-10.3
HCM Lane LOS	A	-	-	-
HCM 95th \%ttile Q(veh)	0	-	-	-

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	372	0	-	0	749	372
Stage 1	-	-	-	-	372	-
Stage 2	-	-	-	-	377	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1186	-	-	-	379	674
\quad Stage 1	-	-	-	-	697	-
Stage 2	-	-	-	-	694	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1186	-	-	-	373	674
Mov Cap-2 Maneuver	-	-	-	-	485	-
Stage 1	-	-	-	-	685	-
Stage 2	-	-	-	-	694	-

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	10.9
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1186	-	-	-	631
HCM Lane V/C Ratio	0.017	-	-	-0.031	
HCM Control Delay (s)	8.1	-	-	-10.9	
HCM Lane LOS	A	-	-	-	B
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.1

Intersection												
Int Delay，s／veh 4.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	4	「	${ }^{*}$	\uparrow			${ }_{4}$	「゙		＊	
Traffic Vol，veh／h	17	266	90	41	294	1	107	2	45	3	2	14
Future Vol，veh／h	17	266	90	41	294	1	107	2	45	3	2	14
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	－	－	None									
Storage Length	140	－	100	100	－	－	－	－	0	－	－	－
Veh in Median Storage，\＃		0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles，\％	2	2	4	4	2	2	4	4	4	2	4	2
Mvmt Flow	19	302	102	47	334	1	122	2	51	3	2	16

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	324	0	0	0	597	321
Stage 1	-		- -	-	321	-
Stage 2	-		- -	-	276	-
Critical Hdwy	4.12		- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-		- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1236	-	- -	-	466	720
Stage 1	-	-	- -	-	735	-
Stage 2	-	-	- -	-	771	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1236	-	-	-	464	720
Mov Cap-2 Maneuver	-	-	- -	-	554	-
Stage 1	-	-	- -	-	731	-
Stage 2	-	-	- -	-	771	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		10.4	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1236	-	-	-	707
HCM Lane V/C Ratio		0.005	5	-	-	0.054
HCM Control Delay (s)		7.9	9	-	-	10.4
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	0	-	-	0.2

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	384	0	-	0	773	384
Stage 1	-	-	-	-	384	-
Stage 2	-	-	-	-	389	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1174	-	-	-	367	664
\quad Stage 1	-	-	-	-	688	-
Stage 2	-	-	-	-	685	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1174	-	-	-	361	664
Mov Cap-2 Maneuver	-	-	-	-	475	-
Stage 1	-	-	-	-	676	-
Stage 2	-	-	-	-	685	-

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	11
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1174	-	-	-620	
HCM Lane V/C Ratio	0.017	-	-	-0.032	
HCM Control Delay (s)	8.1	-	-	-	11
HCM Lane LOS	A	-	-	-	B
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.1

Intersection												
Int Delay, s/veh	5.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	4	「	${ }^{7}$	\uparrow			\uparrow	「		\&	
Traffic Vol, veh/h	5	204	164	67	245	5	116	2	57	2	2	30
Future Vol, veh/h	5	204	164	67	245	5	116	2	57	2	2	30
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Frest	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	140	-	100	100	-	-	-	-	0	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	20	20	2	2	20	20	20	2	20	2
Mvmt Flow	6	232	186	76	278	6	132	2	65	2	2	34

Intersection												
Int Delay, s/veh	9.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{7}$	\uparrow			\uparrow	「		\&	
Traffic Vol, veh/h	17	276	123	69	304	1	147	2	65	3	2	14
Future Vol, veh/h	17	276	123	69	304	1	147	2	65	3	2	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	140	-	100	100	-	-	-	-	0	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	20	20	2	2	20	20	20	2	20	2
Mvmt Flow	19	314	140	78	345	1	167	2	74	3	2	16

	4	\rightarrow	\cdots			4	4	\dagger	p	(4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	F	${ }^{7}$	\uparrow			*	「		\$	
Traffic Volume (vph)	17	276	123	69	304	1	147	2	65	3	2	14
Future Volume (vph)	17	276	123	69	304	1	147	2	65	3	2	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	140		100	100		0	0		0	0		0
Storage Lanes	1		1	1		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850						0.850		0.899	
Flt Protected	0.950			0.950				0.953			0.993	
Satd. Flow (prot)	1770	1863	1346	1504	1863	0	0	1509	1346	0	1634	0
Flt Permitted	0.554			0.577				0.714			0.962	
Satd. Flow (perm)	1032	1863	1346	914	1863	0	0	1131	1346	0	1583	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			134						71		15	
Link Speed (mph)		65			65			30			30	
Link Distance (ft)		1490			1465			936			1270	
Travel Time (s)		15.6			15.4			21.3			28.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	20\%	20\%	2\%	2\%	20\%	20\%	20\%	2\%	20\%	2\%
Adj. Flow (vph)	18	300	134	75	330	1	160	2	71	3	2	15
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	18	300	134	75	331	0	0	162	71	0	20	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					Yes							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2	1	1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6	20	20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	

3: Site Access/Ute Lane \& Highway 50

	*	\rightarrow	7	\checkmark	\downarrow	\dagger	1	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	NBT	NBR	SBT
Lane Group Flow (vph)	18	300	134	75	331	162	71	20
v/c Ratio	0.03	0.24	0.14	0.12	0.26	0.72	0.22	0.06
Control Delay	6.4	6.8	1.7	6.9	7.0	48.5	8.4	14.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.4	6.8	1.7	6.9	7.0	48.5	8.4	14.4
Queue Length 50th (ft)	3	53	0	12	59	77	0	2
Queue Length 95th (ft)	12	115	21	37	128	142	31	19
Internal Link Dist (ft)		1410			1385	856		1190
Turn Bay Length (ft)	140		100	100				
Base Capacity (vph)	697	1259	953	617	1259	332	445	475
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.24	0.14	0.12	0.26	0.49	0.16	0.04
Intersection Summary								

ROUNDABOUT OPERATIONAL ANALYSIS MEMO

050A \& Access B Gunnison, CO

CDOT REGION 3

September 2021

Prepared by:
Mark Lenters, P.E., and Jay VonAhsen
Kimley-Horn and Associates, Inc.
4582 South Ulster Street, Suite 1500
Denver, CO 80237

Prepared for: CDOT Region 3 Traffic and Safety Unit
September 03, 2021

Kimley»)Horn

PROPOSED ROUNDABOUT

Location: 050A \& Access B, Gunnison, CO, MP 158.50
Traffic Volume Source: Gunnison Rising Access Points A and B Traffic Impact Analysis (TIA) prepared by LSC Transportation Consultants, Inc. dated February 25, 2021
Analysis Parameters: \quad Truck Percentages $=2 \%$ (all movements)
Peak Hour Factor (PHF) $=0.90$

Design Parameters:

Table 1

PARAMETER	Single-lane Roundabout
Approach road half-width, ft	12.0
Entry width, ft (effective width, not physical width)	13.0
Effective flare length, ft	65.0
Entry radius, ft	Varies, $65-85$
Inscribed circle diameter, ft	130
PHI - Conflict (entry) angle, deg	25.0
Splitter Island Length from ICD, ft (along Hwy 50)	350
Nominal widths on approaches (FOC to FOC), ft	18.0
Circulating Width, ft	20.0
Design Vehicle	WB-67

Notes:

1. The splitter island length along Hwy 50 has been increased from a typical high-speed approach value of 200 ft to 350 ft to account for the 65 mph posted speed limit. This additional splitter island length assists with the transitional zone where approaching motorist speed is being slowed down via the use of horizontal curvature and the introduction of a physical raised divider (the splitter island). Superelevation within 500 ft of the ICD of the roundabout should be prohibited to ensure driver eye height maintains a constant visual of roadway surface along the approach to the roundabout.
2. The intersection's average daily volume is well below the typical threshold of a single-lane roundabout daily capacity of 20,000 to $25,000 \mathrm{vpd}$. This level of daily traffic converted to peak hour traffic would not be foreseen to create any type of capacity constraint for the proposed single-lane roundabout scenario.

Kimley»)Horn

Results:

Table 2 - Year 2041 Roundabout Capacity Analysis

MODEL		EAST LEG - WB Approach	NORTH LEG - SB Approach	WEST LEG - EB Approach	SOUTH LEG - Northbound Approach	OVERALL INTERSECTION
Arcady	AM Peak	$5.8(\mathrm{~A})$	$4.8(\mathrm{~A})$	$6.0(\mathrm{~A})$	$5.0(\mathrm{~A})$	$5.7(\mathrm{~A})$
	PM Peak	$6.4(\mathrm{~A})$	$4.9(\mathrm{~A})$	$6.2(\mathrm{~A})$	$5.5(\mathrm{~A})$	$6.1(\mathrm{~A})$
HCM 6	AM Peak	$9.1(\mathrm{~A})$	$9.6(\mathrm{~A})$	$8.1(\mathrm{~A})$	$5.6(\mathrm{~A})$	$8.6(\mathrm{~A})$
	PM Peak	$13.8(\mathrm{~B})$	$8.5(\mathrm{~A})$	$11.2(\mathrm{~B})$	$9.4(\mathrm{~A})$	$11.8(\mathrm{~B})$

Right-of-Way:

Approximate right-of-way boundaries have been sketched on Exhibit 1.0 based on the Gunnison County Map Viewer tool sourced from https://gis.gunnisoncounty.org/default map.aspx. The southern leg of the proposed roundabout would assume to be provided with sufficient ROW width at the time the adjacent development files its plat documents.

Above: 130 ft ICD roundabout southern leg. Red line represents ROW boundary traced from the Gunnison County Map Viewer database.

Kimley»)Horn

Sight Distance:

Above: Eastbound view near the proposed roundabout intersection (Source: Google Earth)
The longitudinal grade of Hwy 50 is relatively flat adjacent to the proposed intersection location. The topography to the north is steeply upward and to the south is steeply downward. Associated vertical sight distance checks will be important during the engineering phase to maintain reciprocal sight distance for motorists and stopping sight distance for approaching, circulating, and exiting vehicles.

Conclusion:

it is recommended a single-lane roundabout be further considered at the subject intersection by performing right-of-way boundary survey and preliminary engineering design to determine if other limiting factors may be present at this location.

Kimley»)Horn

Methodology:

The anticipated capacity of the proposed roundabout intersection was analyzed using Junctions 10 roundabout design and capacity analysis software. Two models were created and analyzed to compare a range of predicted capacity based on an empirical model (Arcady) and the current U.S. roundabout capacity model (HCM $6^{\text {th }}$ Edition).

Arcady (Assessment of Roundabout Capacity and Delay) is a roundabout capacity model based on U.K. empirical research into geometry-capacity relationships. The findings on capacity performance for U.S. roundabouts to-date and our experience suggests a reduction in the Arcady capacity assumed for modeling this type of intersection as a roundabout is appropriate. The Arcady analysis includes a capacity equation reduction of 10% for the design year (2041) analysis. Since Arcady is an empirical data-based model, design parameters have been assigned to analyze the roundabout concept design. The parameters in Table 1 were assigned to the Concept Design (Exhibit 1.0 Appendix A) as well as the Arcady roundabout capacity model.

APPENDIX A:

Exhibit 1.0 - Roundabout Concept Design
 Exhibit 1.1 - Fastest Path Speed Performance Checks Exhibit 1.2 - AutoTURN® Truck Turning Paths

Kimley»Horn

APPENDIX B:

Design Year Traffic Volumes (Year 2041)

Kimley»Horn

APPENDIX C:

Roundabout Capacity Analysis Report (Arcady model)

Filename: Location \#2 Gunnison Arcady Model Year 2041 Traffic.j10
Path: \KKimley-Horn.comISE_ATLIATL_Roadway\000 ROUNDABOUTSI2021ICDOTICDOT Feasibility Studies 102 50A New Int Gunnisonl01_C̄ALCS
Report generation date: 9/3/2021 10:15:44 AM

```
"2041, AM
"2041, PM
```


Summary of intersection performance

	AM									PM								
	Set ID	$\begin{gathered} \text { Q } \\ (\text { Veh }) \end{gathered}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS	Int Del (s)	Int LOS	Res Cap	Set ID	$\underset{\text { (Veh) }}{\text { Q }}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS	Int Del (s)	Int LOS	Res Cap
	2041																	
Leg 1	D1	0.6	2.1	5.77	0.38	A	5.68	A	$\begin{gathered} 112 \\ \% \\ {[\mathrm{Leg}} \\ 3] \end{gathered}$	D2	0.7	2.7	6.35	0.42	A	6.07	A	$\begin{gathered} 92 \\ \% \\ {\left[\begin{array}{c} \text { [eg } \\ 1] \end{array}\right.} \end{gathered}$
Leg 2		0.1	0.5	4.79	0.05	A					0.0	0.5	4.89	0.03	A			
Leg 3		0.7	1.9	6.03	0.43	A					0.8	2.4	6.19	0.44	A			
Leg 4		0.3	1.2	4.95	0.22	A					0.4	1.1	5.47	0.26	A			

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
V Values shown are the highest values encountered over all time segments. Delay is the maximum value of $A v$. delay per arriving vehicle. Int $L O S$ and Int Del are demand-weighted Av.s. Res Cap indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	
Location	
Site number	
Date	$8 / 12 / 2021$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	KIMLEY-HORN\Jay.VonAhsen
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Av. delay units	Total delay units	Rate of delay units
ft	mph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (ft)	$\begin{gathered} \text { Calculate } \\ Q \\ \text { Percentiles } \end{gathered}$	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Threshold	Av. Delay threshold (s)	Q threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
18.86	\checkmark				\checkmark	Delay	0.85	36.00	20.00		500

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2041	AM	PHF	$08: 00$	$09: 00$	15	\checkmark
D2	2041	PM	ONE HOUR	$17: 00$	$18: 30$	15	\checkmark

Analysis Set Details

ID	Include in report	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
A1	\checkmark	100.000	100.000

2041, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Queue variations	Analysis Options	Q percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Int Del (s)	Int LOS
$\mathbf{1}$	untitled	Standard Roundabout		$1,2,3,4$	5.68	A

Intersection Network

Driving side	Lighting	Res Cap (\%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	112	Leg 3	5.68	A

Legs

Legs

Leg	Name	Description	No yield line
$\mathbf{1}$	untitled		
2	untitled		
3	untitled		
4	untitled		

Roundabout Geometry

Leg	V (ft)	E (ft)	I' (ft)	R (ft)	D (ft)	PHI (deg)	Entry only	Exit only
$\mathbf{1}$	12.00	13.00	65.0	75.0	130.0	25.0		
$\mathbf{2}$	12.00	13.00	65.0	64.0	130.0	25.0		
$\mathbf{3}$	12.00	13.00	65.0	84.0	130.0	25.0		
$\mathbf{4}$	12.00	13.00	65.0	65.0	130.0	25.0		

Slope / Intercept / Capacity

Leg Intercept Adjustments

Leg	Type	Reason	Intercept Adj (\%)
$\mathbf{1}$	Percentage		90.00
$\mathbf{2}$	Percentage		90.00
$\mathbf{3}$	Percentage		90.00
$\mathbf{4}$	Percentage		90.00

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
$\mathbf{1}$	0.555	1102
$\mathbf{2}$	0.551	1094
$\mathbf{3}$	0.557	1107
$\mathbf{4}$	0.551	1095

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2041	AM	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
\checkmark	\checkmark	Truck \%s	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Av. Demand (Veh/hr)	Scaling Factor (\%)
$\mathbf{1}$		PHF	\checkmark	317	100.000
$\mathbf{2}$		PHF	\checkmark	34	100.000
$\mathbf{3}$		PHF	\checkmark	373	100.000
$\mathbf{4}$		PHF	\checkmark	175	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
$\mathbf{1}$	317	0.84	SecondQuarter
$\mathbf{2}$	34	0.84	SecondQuarter
$\mathbf{3}$	373	0.84	SecondQuarter
$\mathbf{4}$	175	0.84	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0	5	245	67
	$\mathbf{2}$	2	0	30	2
	$\mathbf{3}$	204	5	0	164
	$\mathbf{4}$	57	$\mathbf{2}$	116	0

Vehicle Mix

Truck \%s

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	2	2	2	2
	$\mathbf{2}$	2	2	2	2
	$\mathbf{3}$	2	2	2	2
	$\mathbf{4}$	2	2	2	2

Results

Results Summary for whole modelled period

Leg	Max V/C	Max Delay (s)	Max Q (Veh)	Max Q95 (Veh)	Max LOS	Av. Demand (Veh/hr)	Total Intersection Arrivals (Veh)
$\mathbf{1}$	0.38	5.77	0.6	2.1	A	317	317

| $\mathbf{2}$ | 0.05 | 4.79 | 0.1 | 0.5 | A | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 0.43 | 6.03 | 0.7 | 1.9 | A | 373 |
| $\mathbf{4}$ | 0.22 | 4.95 | 0.3 | 1.2 | A | 373 |

Main Results for each time segment

08:00-08:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1	277	69	107	1021	0.271	275	228	0.0	0.4	4.817	A
2	30	7	372	868	0.034	30	10	0.0	0.0	4.294	A
3	326	81	62	1051	0.310	324	340	0.0	0.4	4.940	A
4	153	38	183	972	0.157	152	202	0.0	0.2	4.385	A

08:15-08:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	$\begin{aligned} & \text { Throughput } \\ & \text { (exit) } \\ & \text { (Veh/hr) } \end{aligned}$	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1	377	94	146	999	0.378	376	312	0.4	0.6	5.772	A
2	40	10	508	793	0.051	40	14	0.0	0.1	4.786	A
3	444	111	84	1038	0.428	443	464	0.4	0.7	6.035	A
4	208	52	251	935	0.223	208	277	0.2	0.3	4.948	A

08:30-08:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow $(V e h / h r)$	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	337	84	131	1008	0.335	338	280	0.6	0.5	5.374	A
$\mathbf{2}$	36	9	456	822	0.044	36	13	0.1	0.0	4.585	A
$\mathbf{3}$	397	99	76	1043	0.380	397	416	0.7	0.6	5.579	A
$\mathbf{4}$	186	47	225	950	0.196	186	248	0.3	0.2	4.717	A

08:45-09:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput $(\mathbf{e x i t})$ $(\mathbf{V e h} / \mathbf{h r})$	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	277	69	108	1021	0.271	277	230	0.5	0.4	4.845	A
$\mathbf{2}$	30	7	374	866	0.034	30	10	0.0	0.0	4.302	A
$\mathbf{3}$	326	81	62	1051	0.310	326	342	0.6	0.5	4.974	A
$\mathbf{4}$	153	38	185	972	0.157	153	204	0.2	0.2	4.398	A

Q Variation Results for each time segment

08:00-08:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.37	0.00	0.00	0.37	0.37			N/A	
$\mathbf{2}$	0.04	0.03	0.25	0.45	0.48			N/A	
$\mathbf{3}$	0.45	0.00	0.00	0.45	0.45			N/A	N/A
$\mathbf{4}$	0.19	0.00	0.00	0.19	0.19			N/A	N/A

08:15-08:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker

$\mathbf{1}$	0.60	0.03	0.25	0.60	0.60			N/A	N/A
$\mathbf{2}$	0.05	0.03	0.26	0.46	0.49			N/A	N/A
$\mathbf{3}$	0.74	0.03	0.26	0.74	0.74			N/A	N/A
$\mathbf{4}$	0.28	0.03	0.25	0.46	0.48			N/A	N/A

08:30-08:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.51	0.03	0.29	0.98	2.15			N/A	
$\mathbf{2}$	0.05	0.00	0.00	0.05	0.05			N/A	
$\mathbf{3}$	0.62	0.03	0.28	0.62	1.95			N/A	N/A
$\mathbf{4}$	0.25	0.03	0.29	0.78	1.15			N/A	

08:45-09:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.37	0.00	0.00	0.37	0.37			N/A	N/A
$\mathbf{2}$	0.04	0.00	0.00	0.04	0.04			N/A	N/A
$\mathbf{3}$	0.45	0.00	0.00	0.45	0.45			N/A	N/A
$\mathbf{4}$	0.19	0.00	0.00	0.19	0.19			N/A	N/A

2041, PM

Data Errors and Warnings

Severity	Area	Item	
Warning	Queue variations	Analysis Options	Q percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Int Del (s)	Int LOS
$\mathbf{1}$	untitled	Standard Roundabout		$1,2,3,4$	6.07	A

Intersection Network

Driving side	Lighting	Res Cap (\%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	92	Leg 1	6.07	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D2	2041	PM	ONE HOUR	$17: 00$	$18: 30$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
\checkmark	\checkmark	Truck \%s	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Av. Demand (Veh/hr)	Scaling Factor (\%)
$\mathbf{1}$		ONE HOUR	\checkmark	374	100.000
$\mathbf{2}$		ONE HOUR	\checkmark	19	100.000
$\mathbf{3}$		ONE HOUR	\checkmark	416	100.000
$\mathbf{4}$		ONE HOUR	\checkmark	214	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0	1	304	69
	$\mathbf{2}$	3	0	14	2
	$\mathbf{3}$	276	17	0	123
	$\mathbf{4}$	65	2	147	0

Vehicle Mix

Truck \%s
\square

	To					
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
	$\mathbf{1}$	2	2	2	2	
	$\mathbf{2}$	2	2	2	2	
	$\mathbf{3}$	2	2	2	2	
	$\mathbf{4}$	2	2	2	2	

Results

Results Summary for whole modelled period

Leg	Max V/C	Max Delay (s)	Max Q (Veh)	Max Q95 (Veh)	Max LOS	Av. Demand (Veh/hr)	Total Intersection Arrivals (Veh)
$\mathbf{1}$	0.42	6.35	0.7	2.7	A	343	
$\mathbf{2}$	0.03	4.89	0.0	0.5	A	17	
$\mathbf{3}$	0.44	6.19	0.8	2.4	A	26	
$\mathbf{4}$	0.26	5.47	0.4	1.1	A	382	

Main Results for each time segment

17:00-17:15

| Leg | Total
 Demand
 $($ Veh/hr) | Intersection
 Arrivals
 (Veh) | Circulating
 flow
 $($ Veh/hr) | Capacity
 $($ Veh/hr) | V/C | Throughput
 $($ (Veh/hr) | Throughput
 $(\mathbf{e x i t})$
 $($ Veh/hr) | Start
 queue
 $($ Veh $)$ | End
 queue
 (Veh) | Delay
 (\mathbf{s}) | Unsignalised
 level of
 service |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 282 | 70 | 124 | 1011 | 0.278 | 280 | 258 | 0.0 | 0.4 | 4.913 | A |
| $\mathbf{2}$ | 14 | 4 | 389 | 858 | 0.017 | 14 | 15 | 0.0 | 0.0 | 4.266 | A |
| $\mathbf{3}$ | 313 | 78 | 55 | 1054 | 0.297 | 312 | 348 | 0.0 | 0.4 | 4.836 | A |
| $\mathbf{4}$ | 161 | 40 | 222 | 951 | 0.169 | 160 | 145 | 0.0 | 0.2 | 4.547 | A |

17:15-17:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1	336	84	149	998	0.337	336	309	0.4	0.5	5.436	A
2	17	4	467	815	0.021	17	18	0.0	0.0	4.509	A
3	374	93	66	1048	0.357	373	417	0.4	0.5	5.328	A
4	192	48	266	927	0.208	192	174	0.2	0.3	4.898	A

17:30-17:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput $(\mathbf{e x i t)}$ $(\mathbf{V e h} / \mathbf{h r})$	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	412	103	182	979	0.421	411	378	0.5	0.7	6.327	A
$\mathbf{2}$	21	5	571	758	0.028	21	22	0.0	0.0	4.884	A
$\mathbf{3}$	458	115	81	1040	0.440	457	511	0.5	0.8	6.167	A
$\mathbf{4}$	236	59	325	894	0.264	235	213	0.3	0.4	5.462	A

17:45-18:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	412	103	183	979	0.421	412	379	0.7	0.7	6.347	A
$\mathbf{2}$	21	5	573	757	0.028	21	22	0.0	0.0	4.888	A
$\mathbf{3}$	458	115	81	1040	0.441	458	512	0.8	0.8	6.187	A
$\mathbf{4}$	236	59	326	894	0.264	236	214	0.4	0.4	5.469	A

18:00-18:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	336	84	150	997	0.337	337	310	0.7	0.5	5.458	A
$\mathbf{2}$	17	4	469	814	0.021	17	18	0.0	0.0	4.514	A
$\mathbf{3}$	374	93	67	1048	0.357	375	419	0.8	0.6	5.356	A
$\mathbf{4}$	192	48	267	926	0.208	193	175	0.4	0.3	4.911	A

18:15-18:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1	282	70	125	1011	0.279	282	259	0.5	0.4	4.944	A
2	14	4	392	857	0.017	14	15	0.0	0.0	4.274	A
3	313	78	56	1054	0.297	314	351	0.6	0.4	4.867	A
4	161	40	223	950	0.170	161	146	0.3	0.2	4.563	A

Q Variation Results for each time segment

17:00-17:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.38	0.00	0.00	0.38	0.38			N/A	
$\mathbf{2}$	0.02	0.00	0.00	0.02	0.02			N/A	
$\mathbf{3}$	0.42	0.00	0.00	0.42	0.42			N/A	N/A
$\mathbf{4}$	0.20	0.00	0.00	0.20	0.20			N/A	N/A

17:15-17:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.50	0.50	1.00	1.40	1.45			N/A	
$\mathbf{2}$	0.02	0.02	0.25	0.45	0.48			N/A	
$\mathbf{3}$	0.55	0.55	1.00	1.40	1.45			N/A	N/A
$\mathbf{4}$	0.26	0.00	0.00	0.26	0.26			N/A	N/A

17:30-17:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.72	0.03	0.26	0.72	0.72			N/A	N/A
$\mathbf{2}$	0.03	0.00	0.00	0.03	0.03			N/A	N/A
$\mathbf{3}$	0.78	0.03	0.26	0.78	0.78			N/A	N/A
$\mathbf{4}$	0.35	0.03	0.25	0.46	0.48			N/A	N/A

17:45-18:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.72	0.03	0.28	0.74	2.67			N/A	
$\mathbf{2}$	0.03	0.00	0.00	0.03	0.03			N/A	
$\mathbf{3}$	0.78	0.03	0.28	0.78	2.43			N/A	N/A
$\mathbf{4}$	0.36	0.03	0.32	1.08	1.08			N/A	N/A

18:00-18:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.51	0.51	1.00	1.40	1.45			N/A	
$\mathbf{2}$	0.02	0.00	0.00	0.02	0.02			N/A	
$\mathbf{3}$	0.56	0.55	1.00	1.40	1.45			N/A	
$\mathbf{4}$	0.26	0.00	0.00	0.26	0.26			N/A	N/A

Page 10 of 10
18:15-18:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
$\mathbf{1}$	0.39	0.00	0.00	0.39	0.39			N/A	N/A
$\mathbf{2}$	0.02	0.00	0.00	0.02	0.02			N/A	N/A
$\mathbf{3}$	0.43	0.00	0.00	0.43	0.43			N/A	N/A
$\mathbf{4}$	0.21	0.00	0.00	0.21	0.21			N/A	N/A

Kimley»Horn

APPENDIX D:

Roundabout Capacity Analysis Report (HCM 6 model)

Filename: Location \#2 Gunnison HCM Model Year 2041 Traffic.j10
Path: \KKimley-Horn.comISE_ATLIATL_Roadway1000 ROUNDABOUTSI2021ICDOTICDOT Feasibility Studies 102 50A New Int Gunnisonl01_C̄ALCS
Report generation date: 9/3/2021 10:16:56 AM

```
"2041, AM
"2041, PM
```


Summary of intersection performance

	AM									PM								
	Set ID	$\begin{gathered} Q \\ \text { (Veh) } \end{gathered}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS	Int Del (s)	Int LOS	Res Cap	Set ID	$\begin{gathered} \mathbf{Q} \\ \text { (Veh) } \end{gathered}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS	Int Del (s)	Int LOS	Res Cap
	2021																	
Leg 1	D1		3.3	9.06	0.54	A	8.64	A	$\begin{gathered} 58 \\ \% \\ {\left[\begin{array}{c} \text { Leg } \\ 2] \end{array}\right.} \end{gathered}$	D2		5.0	13.80	0.65	B	11.76	B	$\begin{gathered} 28 \\ \% \\ {[\mathrm{Leg}} \\ \text { 1] } \end{gathered}$
Leg 2			1.4	9.59	0.33	A						0.9	8.47	0.23	A			
Leg 3			3.0	8.06	0.51	A						5.4	11.22	0.66	B			
Leg 4			0.1	5.61	0.05	A						0.8	9.41	0.22	A			

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
 Del are demand-weighted Av.s. Res Cap indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	
Location	
Site number	
Date	$8 / 12 / 2021$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	KIMLEY-HORN\Jay.VonAhsen
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Av. delay units	Total delay units	Rate of delay units
ft	mph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (ft)	$\begin{gathered} \text { Calculate } \\ \mathbf{Q} \\ \text { Percentiles } \end{gathered}$	Calculate detailed queueing delay	Show lane queues in feet/ metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Threshold	Av. Delay threshold (s)	Q threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
18.86	\checkmark				\checkmark	Delay	0.85	36.00	20.00	\checkmark	500

HCM Calibration

HCM Calibration	Lane type	Num circulating lanes	Num exit lanes	A	B
1	Single lane	1		1380.00	-0.00102
2	Single lane	2		1420.00	-0.00085
3	Nearside	1		1420.00	-0.00091
4	Nearside	2		1420.00	-0.00085
5	Offside	1		1420.00	-0.00091
6	Offside	2		1350.00	-0.00092
7	Yielding bypass		1	1380.00	-0.00102
8	Yielding bypass		2	1420.00	-0.00085
9	Non-yielding bypass		1	99999.00	0.00000

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2021	AM	PHF	$08: 00$	$09: 00$	15	\checkmark
D2	2021	PM	PHF	$17: 00$	$18: 00$	15	\checkmark

Analysis Set Details

ID	Include in report	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
A1	\checkmark	100.000	100.000

2041, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	HCM Model	D1-2021, AM	Demand Set 1: HCM models are most typically used with PHF traffic flow profiles and single time segments. Use of HCM models with other flow profiles is at the user's own risk
Warning	HCM Model		One or more intersections use HCM methodologies. These methods are not associated with TRL. The user should apply judgement when interpreting the results.
Warning	Queue variations	Analysis Options	Q percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Int Del (s)	Int LOS
$\mathbf{1}$	untitled	HCM Roundabout		$1,2,3,4$	8.64	A

Intersection Network

Driving side	Lighting	Res Cap (\%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	58	Leg 2	8.64	A

Legs

Legs

Leg	Name	Description
$\mathbf{1}$	untitled	
2	untitled	
3	untitled	
4	untitled	

HCM Lanes

Leg	HCM Lane	Lane type	Number of conflicting lanes	Destination legs
$\mathbf{1}$	$\mathbf{1}$	Single lane	1	$1,2,3,4$
$\mathbf{2}$	$\mathbf{1}$	Single lane	1	$1,2,3,4$
$\mathbf{3}$	$\mathbf{1}$	Single lane	1	$1,2,3,4$
$\mathbf{4}$	$\mathbf{1}$	Single lane	1	$1,2,3,4$

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2041	AM	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
\checkmark	\checkmark	Truck \%s	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Av. Demand (Veh/hr)	Scaling Factor (\%)

$\mathbf{1}$		PHF	\checkmark	586	100.000
$\mathbf{2}$		PHF	\checkmark	197	100.000
$\mathbf{3}$		PHF	\checkmark	605	100.000
$\mathbf{4}$		PHF	\checkmark	29	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
$\mathbf{1}$	586	0.90	SecondQuarter
$\mathbf{2}$	197	0.90	SecondQuarter
$\mathbf{3}$	605	0.90	SecondQuarter
$\mathbf{4}$	29	0.90	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0	4	578	4
	$\mathbf{2}$	15	0	180	2
	$\mathbf{3}$	485	68	0	52
	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2 6}$	0

Vehicle Mix

Truck \%s

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	2	2	2	2
	$\mathbf{2}$	2	2	2	2
	$\mathbf{3}$	2	2	2	2
	$\mathbf{4}$	2	2	2	2

Results

Results Summary for whole modelled period

Leg	Max V/C	Max Delay (s)	Max Q95 (Veh)	Max LOS	Av. Demand (Veh/hr)	Total Intersection Arrivals (Veh)
$\mathbf{1}$	0.54	9.06	3.3	A	586	586
$\mathbf{2}$	0.33	9.59	1.4	A	197	197
$\mathbf{3}$	0.51	8.06	3.0	A	605	605
$\mathbf{4}$	0.05	5.61	0.1	A	29	29

Main Results for each time segment

08:00-08:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)		Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	$\begin{aligned} & \text { Throughput } \\ & \text { (exit) } \\ & \text { (Veh/hr) } \end{aligned}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	543	136	89	0.00	1233	0.440	543	464	2.3	7.390	A
2	182	46	563	0.00	753	0.242	182	69	0.9	7.511	A

$\mathbf{3}$	560	140	19	0.00	1326	0.423	560	726	2.1	6.799	A
4	27	7	526	0.00	783	0.034	27	54	0.1	4.934	A

08:15-08:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	651	163	107	0.00	1211	0.538	651	557	3.3	9.065	A
2	219	55	676	0.00	670	0.327	219	82	1.4	9.593	A
3	672	168	23	0.00	1320	0.509	672	871	3.0	8.063	A
4	32	8	631	0.00	702	0.046	32	64	0.1	5.607	A

08:30-08:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	608	152	100	0.00	1220	0.498	608	520	2.9	8.335	A
2	204	51	631	0.00	702	0.291	204	77	1.2	8.673	A
3	627	157	22	0.00	1323	0.474	627	813	2.6	7.525	A
4	30	8	589	0.00	733	0.041	30	60	0.1	5.326	A

08:45-09:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	Q95 (Veh)	Delay (s)	Unsignalised level of service
$\mathbf{1}$	543	136	89	0.00	1233	0.440	543	464	2.3	7.390	A
$\mathbf{2}$	182	46	563	0.00	753	0.242	182	69	0.9	7.511	A
$\mathbf{3}$	560	140	19	0.00	1326	0.423	560	726	2.1	6.799	A
$\mathbf{4}$	27	7	526	0.00	783	0.034	27	54	0.1	4.934	A

Q Variation Results for each time segment

HCM: Lane Results

Lane Results: 08:00-08:15

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay (\mathbf{s})	V/C	LOS
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	543	543	0.00	89	1233	2.30	7.39	0.44	A
$\mathbf{2}$	$\mathbf{1}$	$1,2,3,4$	182	182	0.00	563	753	0.95	7.51	0.24	A
$\mathbf{3}$	$\mathbf{1}$	$1,2,3,4$	560	560	0.00	19	1326	2.15	6.80	0.42	A
$\mathbf{4}$	$\mathbf{1}$	$1,2,3,4$	27	27	0.00	526	783	0.11	4.93	0.03	A

Lane Results: 08:15-08:30

Leg	HCM Lane	Destination legs	Demand (Veh/hr)	Throughput (Veh/hr)	Ped flow (Ped/hr)	Conflicting flow (Veh/hr)	Capacity (Veh/hr)	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS
1	1	1, 2, 3, 4	651	651	0.00	107	1211	3.33	9.06	0.54	A
2	1	1, 2, 3, 4	219	219	0.00	676	670	1.42	9.59	0.33	A
3	1	1, 2, 3, 4	672	672	0.00	23	1320	3.00	8.06	0.51	A
4	1	1, 2, 3, 4	32	32	0.00	631	702	0.14	5.61	0.05	A

Lane Results: 08:30-08:45

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{(P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay (\mathbf{s})	V/C
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	608	608	0.00	100	1220	2.87	8.34	0.50
\mathbf{L}	$\mathbf{1}$	$1,2,3,4$	204	204	0.00	631	702	1.21	8.67	0.29
\mathbf{A}										
$\mathbf{3}$	$\mathbf{1}$	$1,2,3,4$	627	627	0.00	22	1323	2.63	7.53	0.47
$\mathbf{4}$	$\mathbf{1}$	$1,2,3,4$	30	30	0.00	589	733	0.13	5.33	0.04

Lane Results: 08:45-09:00

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay (\mathbf{s})	V/C
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	543	543	0.00	89	1233	2.30	7.39	0.44
$\mathbf{L O S}$										

2041, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	HCM Model	D2-2021, PM	Demand Set 2: HCM models are most typically used with PHF traffic flow profiles and single time segments. Use of HCM models with other flow profiles is at the user's own risk
Warning	HCM Model		One or more intersections use HCM methodologies. These methods are not associated with TRL. The user should apply judgement when interpreting the results.
Warning	Queue variations	Analysis Options	Q percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Int Del (s)	Int LOS
$\mathbf{1}$	untitled	HCM Roundabout		$1,2,3,4$	11.76	B

Intersection Network

Driving side	Lighting	Res Cap (\%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	28	Leg 1	11.76	B

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D2	2041	PM	PHF	$17: 00$	$18: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
\checkmark	\checkmark	Truck \%s	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Av. Demand (Veh/hr)	Scaling Factor (\%)
$\mathbf{1}$		PHF	\checkmark	553	100.000
$\mathbf{2}$		PHF	\checkmark	134	100.000
$\mathbf{3}$		PHF	\checkmark	793	100.000
$\mathbf{4}$		PHF	\checkmark	112	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
$\mathbf{1}$	553	0.90	SecondQuarter
$\mathbf{2}$	134	0.90	SecondQuarter
$\mathbf{3}$	793	0.90	SecondQuarter
$\mathbf{4}$	112	0.90	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)
\square

$*$		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
From	$\mathbf{1}$	0	11	539	3
	$\mathbf{2}$	10	0	120	4
	$\mathbf{3}$	555	201	0	37
	$\mathbf{4}$	4	4	104	0

Vehicle Mix

Truck \%s

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	$\mathbf{2}$	2	2	2
	$\mathbf{2}$	2	2	2	2
	$\mathbf{3}$	2	2	2	2
	$\mathbf{4}$	2	2	2	2

Results

Results Summary for whole modelled period

Leg	Max V/C	Max Delay (s)	Max Q95 (Veh)	Max LOS	Av. Demand (Veh/hr)	Total Intersection Arrivals (Veh)
$\mathbf{1}$	0.65	13.80	5.0	B	553	553
$\mathbf{2}$	0.23	8.47	0.9	A	134	134
$\mathbf{3}$	0.66	11.22	5.4	B	793	793
$\mathbf{4}$	0.22	9.41	0.8	A	112	112

Main Results for each time segment

17:00-17:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	Throughput (exit) (Veh/hr)	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	512	128	286	0.00	1005	0.510	512	527	3.0	9.796	A
2	124	31	598	0.00	726	0.171	124	200	0.6	6.831	A
3	734	184	16	0.00	1331	0.552	734	706	3.5	8.738	A
4	104	26	709	0.00	647	0.160	104	41	0.6	7.427	A

17:15-17:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	$\begin{aligned} & \text { Throughput } \\ & \text { (exit) } \\ & \text { (Veh/hr) } \end{aligned}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	614	154	343	0.00	947	0.649	614	632	5.0	13.797	B
2	149	37	718	0.00	641	0.232	149	240	0.9	8.466	A
3	881	220	19	0.00	1327	0.664	881	848	5.4	11.224	B
4	124	31	851	0.00	558	0.223	124	49	0.8	9.407	A

17:30-17:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	$\begin{aligned} & \text { Throughput } \\ & \text { (exit) } \\ & \text { (Veh/hr) } \end{aligned}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	573	143	320	0.00	969	0.592	573	590	4.0	11.903	B
2	139	35	670	0.00	674	0.206	139	224	0.8	7.756	A

$\mathbf{3}$	822	206	18	0.00	1328	0.619	822	791	4.5	10.103	B
$\mathbf{4}$	116	29	794	0.00	592	0.196	116	46	0.7	8.540	A

17:45-18:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Ped demand (Ped/hr)	Capacity (Veh/hr)	V/C	Throughput (Veh/hr)	$\begin{aligned} & \text { Throughput } \\ & \text { (exit) } \\ & \text { (Veh/hr) } \end{aligned}$	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	Unsignalised level of service
1	512	128	286	0.00	1005	0.510	512	527	3.0	9.796	A
2	124	31	598	0.00	726	0.171	124	200	0.6	6.831	A
3	734	184	16	0.00	1331	0.552	734	706	3.5	8.738	A
4	104	26	709	0.00	647	0.160	104	41	0.6	7.427	A

Q Variation Results for each time segment

HCM: Lane Results

Lane Results: 17:00-17:15

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay (\mathbf{s})	V/C	LOS
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	512	512	0.00	286	1005	2.97	9.80	0.51	A
$\mathbf{2}$	$\mathbf{1}$	$1,2,3,4$	124	124	0.00	598	726	0.61	6.83	0.17	A
$\mathbf{3}$	$\mathbf{1}$	$1,2,3,4$	734	734	0.00	16	1331	3.52	8.74	0.55	A
$\mathbf{4}$	$\mathbf{1}$	$1,2,3,4$	104	104	0.00	709	647	0.57	7.43	0.16	A

Lane Results: 17:15-17:30

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay $\mathbf{(s)}$	V/C	LOS
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	614	614	0.00	343	947	4.96	13.80	0.65	B
$\mathbf{2}$	$\mathbf{1}$	$1,2,3,4$	149	149	0.00	718	641	0.89	8.47	0.23	A
$\mathbf{3}$	$\mathbf{1}$	$1,2,3,4$	881	881	0.00	19	1327	5.41	11.22	0.66	B
$\mathbf{4}$	$\mathbf{1}$	$1,2,3,4$	124	124	0.00	851	558	0.85	9.41	0.22	A

Lane Results: 17:30-17:45

Leg	HCM Lane	Destination legs	Demand (Veh/hr)	Throughput (Veh/hr)	Ped flow (Ped/hr)	Conflicting flow (Veh/hr)	Capacity (Veh/hr)	$\begin{gathered} \text { Q95 } \\ \text { (Veh) } \end{gathered}$	Delay (s)	V/C	LOS
1	1	1, 2, 3, 4	573	573	0.00	320	969	4.02	11.90	0.59	B
2	1	1, 2, 3, 4	139	139	0.00	670	674	0.77	7.76	0.21	A
3	1	1, 2, 3, 4	822	822	0.00	18	1328	4.55	10.10	0.62	B
4	1	1, 2, 3, 4	116	116	0.00	794	592	0.72	8.54	0.20	A

Lane Results: 17:45-18:00

Leg	HCM Lane	Destination legs	Demand $(\mathbf{V e h} / \mathbf{h r})$	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Ped flow $(\mathbf{(P e d} / \mathbf{h r})$	Conflicting flow $(\mathbf{V e h} / \mathbf{h r})$	Capacity $(\mathbf{V e h} / \mathbf{h r})$	Q95 $(\mathbf{V e h})$	Delay (\mathbf{s})	V/C	LOS
$\mathbf{1}$	$\mathbf{1}$	$1,2,3,4$	512	512	0.00	286	1005	2.97	9.80	0.51	A
$\mathbf{2}$	$\mathbf{1}$	$1,2,3,4$	124	124	0.00	598	726	0.61	6.83	0.17	A
$\mathbf{3}$	$\mathbf{1}$	$1,2,3,4$	734	734	0.00	16	1331	3.52	8.74	0.55	A
$\mathbf{4}$	$\mathbf{1}$	$1,2,3,4$	104	104	0.00	709	647	0.57	7.43	0.16	A

(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@lsces.com
Web Site: http://www.Isccs.com

Transportation Update Memo

Date: June 8, 2007
To: Tim Seibert, NES
From: Christopher McGranahan, P.E., PTOE
Project: Gunnison Gateway Annexation
LSC \#066650

UPDATED WEEKDAY TRIP GENERATION

The weekday trip generation table that was included in the December 12, 2006 Traffic Impact Analysis (TIA) is attached along with the updated table for the recently revised land use plan.

Weekday Traffic

The original trip generation table included in the TIA estimated the site would generate about 34,900 trips on the average weekday. The updated trip generation table estimates the updated land use for the site would generate about 32,150 trips on the average weekday. This results in a decrease of about eight percent.

Weekday Morning Peak-Hour Traffic

The original trip generation table included in the TIA estimated the site would generate about 2,370 trips during the typical weekday morning peak hour. The updated trip generation table estimates the updated land use for the site would generate about 2,200 trips during the typical weekday morning peak hour. This results in a decrease of more than seven percent.

Weekday Afternoon Peak-Hour Traffic

The original trip generation table included in the TIA estimated the site would generate about 3,485 trips during the typical weekday afternoon peak hour. The updated trip generation table estimates
the updated land use for the site would generate about 3,190 trips during the typical weekday afternoon peak hour. This results in a decrease of between eight and nine percent.

Summary of Trip Generation Updates

The proposed single-family home and condo/townhome densities were decreased significantly. This is expected to result in a reduction in weekday traffic of about 3,625 trips per day.

The number of spaces available in the Recreational Vehicle Park was increased from 400 to 500. This is expected to result in an increase in weekday traffic of about 400 trips per day.

The addition of an elementary school is expected to result in an increase in weekday traffic of about 150 trips per day. These would be the trips external to the site.

The Business Park component of the site located in TAZs G and H has increased from about 688,700 square feet to about 716,400 square feet. This is expected to result in an increase in weekday traffic of about 330 trips per day.

Change in Access To/From the West

The original TIA assumed about 1,250 trips per day would use Escalante Drive to access the core of Gunnison. It assumed about 2,100 trips per day would use Georgia Avenue to access the core of Gunnison. If Western State College has issues with improvements to Escalante Drive or additional traffic on Escalante Drive then the traffic distribution assumed in the TIA will need to be revised appropriately.

Georgia Avenue intersects Escalante Drive west of the proposed site. If Georgia Avenue were to remain the primary non-highway access to/from the west it would be difficult to prevent site traffic from using Escalante Drive as the two streets intersect just west of the site. An option is being explored that would make Virginia Street the primary non-highway access to/from the west. This has several benefits over Georgia Avenue including: the intersection of Virginia Street with State Highway 135 is currently signalized while the intersection of Georgia Avenue with State Highway 135 is two-way stop-sign controlled; Virginia Street does not intersection with Escalante Drive, making Escalante Drive much less attractive to non-college traffic; a single-lane roundabout could be implemented at the intersection of Virginia Street and Adams Street to maintain good traffic operations for both streets near the front door of Western State College; a roundabout could be a nice entry feature for Western State College. One negative for this option is that it will require Virginia Street to be constructed through the currently open land west of Adams Street owned by Western State College.

Proposed Traffic Volumes on Virginia Street

With Virginia Street as the only non-highway east/west connection to the core of Gunnison, it is expected that the 1,250 weekday trips previously assigned to Escalante Drive and the 2,100 weekday trips previously assigned to Georgia Avenue would redirect to Virginia Street. The total weekday trips that would ultimately impact Virigina is expected to be in the range of 3,500 and 5,000 trips per day. It is expected a significant portion of this site traffic on Virginia Street would distribute north and south on Colorado, which currently serves as a bypass around the downtown core. As various developments are proposed in the site it is recommended the traffic operations be monitored at the intersection of Virginia Street and Colorado to determine if any modifications are needed to the existing traffic control.

Proposed Access Plan on US Highway 50

The site access intersections on US Highway 50 identified in the original TIA were located partly based on CDOT's requirement of half-mile spacing for full-movement intersections. Review comments from the City of Gunnison and their traffic consultant, Bill Fox, have indicated a desire for two additional site access intersections on the west end of the site to extend the existing street grid found in the core of Gunnison to the west. It is likely CDOT will have issues with these additional access intersections.

CDOT has commented in writing that their agreement to half-mile access spacing was under the assumption that all accesses would be City Streets. They prefer not to grant access rights that only serve a campground, trailhead, business park, commercial, etc. I believe what they would like to see is an east/west road south of US Highway 50 that could connect all or most of the access points locally. If we take the position that this is not possible due to floodplain, ground water, topography, etc., we may have to provide evidence of this to CDOT.

Street Connection Proposed by Steve Westbay

Steve Westbay with the City of Gunnison has proposed a local roadway connection through the site that would connect US Highway 50 and State Highway 135. This route as drawn would be very difficult to achieve based on the existing topography. The alignment proposed is a relatively direct route and has the feeling of a bypass. This may encourage vehicles accessing Crested Butte from east of Gunnison to bypass a majority of the commercial enterprises in Gunnison. It may be more appropriate to have a less direct route that would serve as more of a local access from the middle to the north end of the site to/from the west.

Table 1a - June 2007
Weekday Trip Generation Estimates - Buildout Gunnison Rising - "Authentically Colorado"

Gunnison Rising - "Authentically Colorado" Master Plan Level Traffic Impact Analysis

December 12, 2006

LSC TRANSPORTATION CONSULTANTS, INC.

516 North Tejon Street

Colorado Springs, CO 80903
(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@lsces.com
Web Site: http://www.Isces.com

December 12, 2006
Mr. Timothy Seibert
N.E.S., Inc.

508 South Tejon Street
Colorado Springs, Colorado 80903

$$
\begin{array}{ll}
\text { RE: } & \text { Gunnison Rising - "Authentically Colorado" } \\
\text { Master Plan Level } \\
\text { Traffic Impact Analysis Report } \\
\text { Gunnison, Colorado } \\
\text { LSC \#066650 }
\end{array}
$$

Dear Mr. Seibert:
In response to your request, LSC Transportation Consultants, Inc. has prepared this Master Plan level traffic impact analysis report for the proposed Gunnison Rising - "Authentically Colorado"mixed-use development. We trust that the report will assist you in annexing this property into the City of Gunnison. Please contact me if you have any questions or need further assistance.

Sincerely,

Gunnison Rising - "Authentically Colorado" Master Plan Level Traffic Impact Analysis

December 12, 2006

Prepared for:
Mr. Timothy Seibert
N.E.S., Inc.
508 South Tejon Street
Colorado Springs, CO 80903
(719) 471-0073

Prepared by:
LSC Transportation Consultants, Inc.
516 North Tejon Street
Colorado Springs, CO 80903
(719) 633-2868

TABLE OF CONTENTS

Section Title Page
EXECUTIVE SUMMARY
Proposed Land Use and Access Plan ES-1
Trip Generation ES-1
Weekday and Saturday Traffic Comparison ES-2
Projected Levels of Service ES-2
Traffic Signal Progression Efficiency ES-2
Recommended Roadway Improvements ES-3
Local Neighborhood Traffic Impacts ES-3
CDOT State Highway Access Permit ES-3
TRAFFIC IMPACT ANALYSIS
A INTRODUCTION 1
B LAND USE AND ACCESS PLAN 3
C AREA ROADWAYS 6
D 2007 EXISTING TRAFFIC VOLUMES 8
E TRIP GENERATION 13
F WEEKDAY AND SATURDAY TRAFFIC COMPARISON 16
Existing Traffic Comparison 16
Trip Generation Comparison 16
Comparison Summary 16
G DIRECTIONAL DISTRIBUTION AND TRIP ASSIGNMENT 17
H 2027 BACKGROUND TRAFFIC 21
I 2027 TOTAL TRAFFIC 24
J PROJECTED LEVELS OF SERVICE, TRAFFIC SIGNAL PROGRESSION EFFICIENCY, AND CDOT PERMITS 27
Projected Levels of Service 27
2027 Background Traffic 27
2027 Total Traffic 28
Traffic Signal Progression Efficiency 29
Local Neighborhood Traffic Impacts 37
CDOT State Highway Access Permit 37
K CONCLUSIONS AND RECOMMENDATIONS 38
Trip Generation 38
Weekday and Saturday Traffic Comparison 38
Projected Levels of Service 38
Traffic Signal Progression Efficiency 39
Recommended Roadway Improvements 39
Local Neighborhood Traffic Impacts 39
CDOT State Highway Access Permit 40
APPENDIX A: Traffic Count Reports
APPENDIX B: Level of Service Reports
APPENDIX C: Time/Space Diagrams

LIST OF TABULATIONS

Table Title Page
1a Weekday Trip Generation Estimates - Buildout 14
1b Saturday Trip Generation Estimates - Buildout 15
2a Levels of Service, October 2006 Existing Traffic Adjusted Upward to Reflect Peak Summer Traffic 30
2b Levels of Service, 2027 Background Traffic 31
2c Levels of Service, 2027 Total Traffic 32
3 Time Horizon for Improvements 33
4 US Highway 50 Progression Efficiency 36
LIST OF ILLUSTRATIONS
FigureTitlePage
1 Vicinity Map 2
2a Site Plan 4
2b Traffic Analysis Zones 5
3a Existing Traffic 9
3b Existing Traffic 10
3c Projected Summer Existing Traffic, Lane Geometry, Traffic Control and Level of Service 11
3d Projected Summer Existing Traffic, Lane Geometry, Traffic Control and Level of Service 12
4 Directional Distribution 18
5a Buildout Site-Generated Traffic 19
5b Buildout Site-Generated Traffic 20
6a 2027 Background Traffic, Lane Geometry, Traffic Control and Level of Service 22
6b 2027 Background Traffic, Lane Geometry, Traffic Control and Level of Service 23
7a 2027 Total Traffic, Lane Geometry, Traffic Control and Level of Service 25
7b 2027 Total Traffic, Lane Geometry, Traffic Control and Level of Service 26
8a 2027 Total Lane Geometry Along Site Frontage 34
8b 2027 Total Lane Geometry for SH 135 Between Virginia Street and US 50 35

Executive Summary

Executive Summary

LSC Transportation Consultants, Inc. has prepared this Master Plan level traffic impact analysis report for the proposed Gunnison Rising - "Authentically Colorado" mixed-use development located along US Highway 50 (US 50) east of the City of Gunnison, Colorado. The property is proposed for annexation into the City of Gunnison.

PROPOSED LAND USE AND ACCESS PLAN

Buildout of the property is proposed as approximately 1,012 single-family houses, 628 townhouse/condominium units, 233,400 square feet of shopping center space, 688,700 square feet of business park space, a 400-space recreational vehicle park/campground, and a 20-acre equestrian center.

There are numerous site access intersections proposed to US 50, as well as local site access intersections via Georgia Avenue and Escalante Drive. The locations of these site access intersections are shown on the various report figures.

TRIP GENERATION

Buildout of the site is projected to generate about 34,895 vehicle-trips during a typical weekday, with about half of the vehicles entering and half of the vehicles exiting the site. During the weekday morning peak hour, about 1,250 vehicles would enter and 1,120 vehicles would exit the site. During the weekday afternoon peak hour, about 1,715 vehicles would enter and 1,765 vehicles would exit the site.

Buildout of the site is projected to generate about 33,390 vehicle-trips during a typical Saturday, with about half of the vehicles entering and half of the vehicles exiting the site. During the Saturday mid-day peak hour, about 1,730 vehicles would enter and 1,485 vehicles would exit the site.

WEEKDAY AND SATURDAY TRAFFIC COMPARISON

The existing and projected site-generated traffic volumes are expected to be higher during the typical weekday than during the typical Saturday. For this reason, the weekday scenario was analyzed in detail.

PROJECTED LEVELS OF SERVICE

All of the movements at the analyzed signalized intersections are projected to operate at acceptable levels of service (LOS) during the peak hours through the year 2027 with the recommended roadway improvements. A few of the movements at the analyzed stop-sign controlled intersections are projected to operate at LOS E or F during the peak hours with the recommended roadway improvements. Potential mitigation for these LOS E and F intersections is discussed in the report.

TRAFFIC SIGNAL PROGRESSION EFFICIENCY

Generally speaking, the proposed traffic signals are fairly well spaced, but some are not within 200 feet of the one-half mile spacing preferred by the Colorado Department of Transportation (CDOT), which requires a progression efficiency analysis. The progression efficiencies on US 50 between New York Street and the proposed Gunnison Rising traffic signals are projected to meet or exceed the CDOT requirement of 35 percent.

The progression efficiencies assumed that the section of US 50 between Adams Street and the Residential Village development will be an extension of the existing five-lane urban cross section to the west, with curb and gutter and a posted speed limit of 45 miles per hour (mph). US 50 is proposed as one through lane in each direction with a rural cross section to the east of the Residential Village development, and with shoulders and roadside ditches. Posting this rural section at either 45 or 65 mph would result in a progression efficiency of approximately 41.5 percent. Posting this rural section at 55 mph would result in a progression efficiency of 35 percent.

RECOMMENDED ROADWAY IMPROVEMENTS

The roadway improvements required to achieve the projected levels of service shown on Tables $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c are detailed on Table 3, along with a suggested party responsible for funding each roadway improvement. Figures 8 a and 8 b show the majority of the recommended roadway improvements.

LOCAL NEIGHBORHOOD TRAFFIC IMPACTS

A majority of the site-generated traffic volume is expected to access the site via US 50. Secondary local site access would be to and from the west via Georgia Avenue and Escalante Drive. Escalante Drive is currently a private college street that has no way to restrict non-college traffic. There is little non-college traffic currently using Escalante Drive due to the layout of the existing street system. With an eastern extension of Georgia, it will be more attractive for non-college traffic to use Escalante Drive as an additional east/west route. If Escalante Drive remains private and unimproved, there will likely be less traffic using Escalante than predicted in this analysis. It is expected that traffic capacity will be adequate on Georgia Avenue to accommodate the projected future traffic with or without improvements to Escalante Drive.

From Georgia Avenue and Escalante Drive, it is expected that the site-generated traffic would use Colorado Street to distribute north and south. The site-generated traffic that has an origin or destination east of State Highway 135 (SH 135) is expected to use the local street grid between Colorado Street and SH 135. The site-generated traffic that has an origin or destination on or west of SH 135 is expected to use Colorado Street to access the existing SH 135 traffic signals at Virginia Street, Denver Street, and Spencer Avenue.

CDOT STATE HIGHWAY ACCESS PERMIT

It is expected that site specific traffic studies will be completed for the various phases of the project in order to obtain any necessary CDOT State Highway Access Permits.

Traffic Impact Analysis Report

SECTION A Introduction

LSC Transportation Consultants, Inc. has prepared this Master Plan level traffic impact analysis report for the proposed Gunnison Rising - "Authentically Colorado" mixed-use development. As shown on Figure 1, the site is located along US Highway 50 (US 50) east of the City of Gunnison, Colorado. The property is proposed for annexation into the City of Gunnison.

This report is being prepared for submittal to the City of Gunnison and the Colorado Department of Transportation (CDOT). The report identifies the development's traffic impacts on the surrounding roadway system, as well as the roadway system improvements needed to mitigate the traffic impacts. The intersections included in the analysis were agreed to by the City of Gunnison and CDOT staff during preliminary discussions. It is expected that site specific traffic studies will be completed for the various phases of the project in order to obtain any necessary CDOT State Highway Access Permits.

The report contains the following: a determination of the existing traffic and roadway conditions in the vicinity of the site including the lane geometries, traffic controls, and levels of service; the projected average weekday, weekday peak-hour, average Saturday, and Saturday peak-hour vehicle-trips to be generated by the site; the assignment of the projected traffic volumes to the surrounding roadway system; a projection of the future background and total traffic volumes on the roadway system for the year 2027; the resulting traffic impacts; and the recommended improvements to the surrounding roadway system.

Land Use and Access Plan

The existing land use in the vicinity of the site is primarily agricultural.

Figure 2a shows the preliminary site plan and the proposed site access intersections. The various traffic analysis zones (TAZ) are shown in Figure 2b. Buildout of the property is proposed as approximately 1,012 single-family houses, 628 townhouse/condominium units, 233,400 square feet of shopping center space, 688,700 square feet of business park space, a 400-space recreational vehicle park/campground, and a 20 -acre equestrian center.

Area Roadways

The roadways in the vicinity of the site are shown on Figure 1, and are listed below followed by a brief description.

- US Highway 50 (US 50) is locally known as Tomichi Avenue. US 50 is a major east/west route extending across Colorado. Locally, US 50 extends west to the City of Montrose and east to Monarch Pass. In the vicinity of the site, US 50 is classified as a Regional Highway (RA) by CDOT and has a twolane rural cross section with a posted speed limit of 65 miles per hour (mph). To the west of the site, US 50 is a five-lane urban section through the City of Gunnison with a posted speed limit of 35 mph .
- State Highway $\mathbf{1 3 5}$ (SH 135) is locally known as Main Street. SH 135 is a north/south route extending north from US 50 in the City of Gunnison to the City of Crested Butte. In the City of Gunnison, SH 135 is classified as a Urban Arterial (NRB) by CDOT and has a five-lane urban cross section with a posted speed limit varying from 25 to 40 mph . To the north of the City of Gunnison, SH 135 becomes a two-lane rural cross section classified as a Regional Highway (RA) with a posted speed limit of 55 mph .
- County Road 72 (CR 72) is an existing gravel County Road that loops around to form two three-leg intersections with US 50 east of the City of Gunnison. CR 72 serves a low density rural subdivision, and has relatively low traffic volumes.
- Industrial Park Road is an existing gravel County Road that forms a threeleg intersection with US 50 east of the City of Gunnison. Industrial Park Road has a posted speed limit of 20 mph , and serves a number of existing industrial uses that generate relatively low traffic volumes.
- Adams Street is a local north/south City street on the east side of the City of Gunnison, that provides direct access to the south side of Western State College and an existing McDonalds restaurant. There is no posted speed limit on Adams Street. At US 50, Adams Street is stop-sign controlled with no pavement markings. Adams Street is wide enough that right-turning vehicles are not blocked by the queued vehicles wishing to turn left or go straight. The Pioneer Museum is located on the southeast corner of the US 50/Adams Street intersection.
- Colorado Street is a north/south City street that provides access to the west side of Western State College, and serves as traffic relief for the signalized US 50/SH 135 intersection by providing an alternative connection between

US 50 and SH 135. Colorado Street has a bicycle lane and parallel parking on each side of the street.

- Georgia Avenue is an east/west City street extending through much of the City of Gunnison, with parking on both sides of the street for much of its length. Georgia Avenue's eastern terminus is at Western State College. An existing parking lot will need to be relocated in order to allow Georgia Avenue to extend into the Gunnison Rising site.
- Virginia Street is an east/west City street extending through much of the City of Gunnison, with parking on both sides of the street for much of its length. Virginia Street's eastern terminus is at Loveland Street. An existing park prevents extending Virginia Street into the Gunnison Rising site. Virginia Street has one of the few existing traffic signals on SH 135 north of US 50.
- Escalante Drive is a private college street running along the east and north borders of Western State College. Escalante Drive terminates at Georgia Avenue on the east and Colorado Street on the west. Preliminary discussions have occurred with Western State College representatives regarding roadway improvements to Escalante Drive and converting Escalante Drive to a public street. These roadway improvements and conversion would provide relief for Georgia Avenue and US 50 for the site-generated traffic wishing to travel to and from the west.

2007 Existing Traffic Volumes

Figures 3 a and 3 b show the existing peak-hour traffic volumes for the analyzed intersections. The traffic volumes were from traffic counts conducted by LSC in September and October 2006. The traffic count reports are attached in Appendix A.

It was agreed with the City of Gunnison and CDOT staff that a summer peakseason adjustment factor would be needed in order to account for the higher summer traffic volumes seen in the City of Gunnison. The peak-hour traffic counts conducted at the SH 135/Spencer Avenue intersection were compared with the traffic counts conducted at this intersectionduring the year 2006 summer season. The following summer peak-season adjustment factors were developed based on a comparison of these two traffic counts.

- US 50 and SH 135 through traffic: The weekday morning peak-hour traffic volumes were increased by 15 percent. The weekday afternoon peak-hour traffic volumes were increased by 30 percent.
- City street local traffic: The weekday morning peak-hour traffic volumes were increased by about five percent. The weekday afternoon peak-hour traffic volumes were increased by about eight percent. The exception was the local streets adjacent to Western State College, which were not adjusted because the Western State College traffic volumes are much lowerduring the summer months.

Figures 3c and 3d show the estimated summer peak-season traffic volumes for the analyzed intersections based on the traffic counts and the summer peak-season adjustment factors. Figures 3c and 3d also show the existing lane geometries, traffic controls, and levels of service for the analyzed intersections.

TRANSPORTATONN.

Estimates of the traffic volumes expected to be generated by the development have been made using the nationally published trip generation rates found in Trip Generation, 6th Edition, 1997 by the Institute of Transportation Engineers (ITE). Table 1a shows the projected average weekday, weekday morning peak-hour, and weekday afternoon peak-hour vehicle-trips to be generated by the development. Table 1b shows the projected average Saturday and Saturday mid-day peak-hour vehicle-trips to be generated by the development.

Buildout of the site is projected to generate about 34,895 vehicle-trips during a typical weekday, with about half of the vehicles entering and half of the vehicles exiting the site. During the weekday morning peak hour, which typically occurs for one hour between 6:30 and 8:30 a.m., about 1,250 vehicles would enter and 1,120 vehicles would exit the site. During the weekday afternoon peak hour, which typically occurs for one hour between 4:00 and 6:00 p.m., about 1,715 vehicles would enter and 1,765 vehicles would exit the site.

Buildout of the site is projected to generate about 33,390 vehicle-trips during a typical Saturday, with about half of the vehicles entering and half of the vehicles exiting the site. During the Saturday mid-day peak hour, which typically occurs for one hour between 12:00 and 2:00 p.m., about 1,730 vehicles would enter and 1,485 vehicles would exit the site.

Table 1b

Saturday Trip Generation Estimates - Buildout

 Gunnison Rising - "Authentically Colorado"| TAZ ${ }^{(1)}$ | Land
 Use
 Code | Land
 Use Description | Trip
 Generation
 Units | Trip Generation Rates ${ }^{(2)}$ | | | Total Trips Generated | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Average
 Saturday
 Traffic | Saturday
 Peak Hour | | Average
 Saturday
 Traffic | Saturday
 Peak Hour | |
| | | | | | In | Out | | In | Out |
| A | 210 | Single-Family Detached Housing | 624 DU ${ }^{(3)}$ | 10.09 | 0.51 | 0.43 | 6,296 | 317 | 270 |
| B | 230 | Residential Condominium/Townhouse | 426 DU | 5.67 | 0.25 | 0.22 | 2,415 | 108 | 92 |
| C | 416 | Campground/Recreational Vehicle Park ${ }^{(4)}$ | 400 Occupied Spaces | 6.00 | 0.27 | 0.12 | 2,400 | 108 | 48 |
| D | 210 | Single-Family Detached Housing | 388 DU | 10.09 | 0.51 | 0.43 | 3,915 | 197 | 168 |
| E | 230 | Residential Condominium/Townhouse | 202 DU | 5.67 | 0.25 | 0.22 | 1,145 | 51 | 44 |
| | 820 | Shopping Center | 174.2 KSF ${ }^{(5)}$ | 66.72 | 3.37 | 3.11 | 11,625 | 588 | 543 |
| F | 820 | Shopping Center | 59.2 KSF | 66.72 | 3.37 | 3.11 | 3,952 | 200 | 184 |
| G | 770 | Business Park ${ }^{(6)}$ | 392.3 KSF | 2.28 | 0.23 | 0.19 | 896 | 89 | 73 |
| H | 770 | Business Park | 296.4 KSF | 2.28 | 0.23 | 0.19 | 677 | 67 | 55 |
| I | - | Equestrian Center ${ }^{(7)}$ | 20 Acres | 3.42 | 0.30 | 0.30 | 68 | 6 | 6 |
| | | Buildout Total | | | | | 33,390 | 1,730 | 1,483 |

Notes:

(1) TAZ = traffic analysis zone (as shown in Figure 2b)
(2) Source: "Trip Generation, 6th Edition, 1997" by the Institute of Transportation Engineers
(3) DU = dwelling unit
(4) The average Saturday traffic rate was estimated by LSC. The Saturday peak-hour traffic rate was assumed to be the same as the weekday afternoon peak-hour rates.
(5) $\mathrm{KSF}=$ thousand square feet
(6) The peak-hour rates were taken as the ratio of the average Saturday traffic rate to the average weekday and peak-hour rates.
(7) Rates estimated by LSC

Weekday and Saturday Traffic Comparison

EXISTING TRAFFIC COMPARISON

The weekday and Saturday peak-hour traffic counts at the SH 135/Spencer Avenue intersection were compared in order to determine which time period had the highest traffic volume. The Saturday SH 135 traffic volumes were found to be approximately 85 percent of the weekday SH 135 traffic volumes. The Saturday Spencer Avenue traffic volumes were found to be approximately 82 percent of the weekday Spencer Avenue traffic volumes.

TRIP GENERATION COMPARISON

Based on the information provided in Section E, the weekday average daily traffic volumes are approximately 4.5 percent higher than the Saturday average daily traffic volumes. The weekday afternoon peak-hour traffic volumes are approximately 8.5 percent higher than the Saturday mid-day peak-hour traffic volumes.

COMPARISON SUMMARY

The existing traffic volumes and the projected site-generated traffic volumes are expected to be higher during the typical weekday than during the typical Saturday. For this reason, the weekday scenario was analyzed in detail.

SECTION G

Directional Distribution and Trip Assignment

The directional distribution of the traffic volumes to be generated by the site is an important factor in determining the development's traffic impacts. There are many factors that determine the distribution including: the site's location with respect to the residential, employment, and activity centers; the site's location with respect to the balance of the City of Gunnison area; the site's proposed land uses; and the roadway system serving the site.

Figure 4 shows the projected directional distribution for the buildout sitegenerated traffic volumes for the year 2027.

The 2027 buildout site-generated traffic volumes on the adjacent roadway system were determined by applying the 2027 distribution percentages (from Figure 4) to the trip generation estimates (from Table 1a). Figures 5a and 5b show the projected 2027 buildout site-generated traffic volumes.

IRANSPITARANTS, NC.

SECTION H 2027 Background Traffic

Figures 6 a and 6 b show the background traffic volume estimates for the year 2027. Background traffic is the traffic estimated to be on the adjacent roadway system without consideration of the site-generated traffic volumes. The background traffic volumes include the traffic generated by the surrounding developments and the through traffic on the adjacent roadways.

CDOT required that the access intersections be assumed to serve the area north of US 50 east of the CR 72 east intersection. Two access points were shown north of US 50 aligning with the proposed site access intersections. In order to be conservative, it was assumed that a total of 400 single-family houses would be served by these two off-site access points. If this area develops with a more rural density, the traffic generated would be much less than that shown on Figure 6b.

Figures 6 a and 6 b also show the recommended lane geometries, traffic controls, and levels of service at the analyzed intersections.

TRANSPORTATIONC.
CONSLITANS,

Figures 7a and 7b show the projected total traffic volumes for the year 2027. The 2027 total traffic volumes are the sum of the 2027 buildout site-generated traffic volumes (from Figures 5a and 5b) plus the 2027 background traffic volumes (from Figures 6a and 6b).

Figures 7 a and 7 b also show the recommended lane geometries, traffic controls, and levels of service at the analyzed intersections.

Projected Levels of Service, Traffic Signal Progression Efficiency, and CDOT Permits

PROJECTED LEVELS OF SERVICE

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A is indicative of very little congestion or delay. LOS F is indicative of a high level of congestion or delay.

The Synchro Version 6 software package was used to project the levels of service for the analyzed intersections. Tables $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c show the projected levels of service for each of the analyzed time periods. The level of service reports are attached in Appendix B.

The roadway improvements required to achieve the levels of service shown on Tables $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c are detailed on Table 3, along with a suggested party responsible for funding each roadway improvement. Figures 8 a and $8 b$ show the majority of the recommended roadway improvements.

All of the movements at the analyzed signalized intersections are projected to operate at acceptable levels of service during the peak hours through the year 2027 with the recommended roadway improvements. The following movements at the analyzed stop-sign controlled intersections are projected to operate at LOS E or F during the peak hours with the recommended roadway improvements.

2027 Background Traffic

US 50/Adams Street: The northbound approach at the intersection is projected to operate at LOS E (with an average delay of 42 seconds per vehicle) during the afternoon peak hour. The southbound shared left-turn/through movement at this intersection is projected to operate at LOS E (with an average delay of 36 seconds
per vehicle) during the morning peak hour. It is unlikely that the City of Gunnison or CDOT would mitigate the LOS E movement, as it is not excessive.

US 50/Colorado Street: The northbound approach at the intersection is projected to operate at LOS F (with an average delay of 50 seconds per vehicle) during the afternoon peak hour. The southbound shared left-turn/through movement at this intersection is projected to operate at LOS F (with an average delay of 60 seconds per vehicle) during the afternoon peak hour. It is unlikely that the City of Gunnison or CDOT would mitigate the LOS F movement, as it is not excessive.

SH 135/Georgia Avenue: The eastbound approach at the intersection is projected to operate at LOS F (with an average delay of 116 seconds per vehicle) during the afternoon peak hour. The westbound approach at the intersection is projected to operate at LOS E (with an average delay of 50 seconds per vehicle) during the afternoon peak hour. This intersection is not a likely candidate for signalization, due to its proximity to the existing traffic signal at the SH 135/Virginia Street intersection. If the SH 135 /Georgia Ave nue intersection were restricted to a right-in/right-out or three-quarter movement, the intersection is projected to operate at acceptable levels of service. The eastbound and westbound left-turn and through movements at this intersection could be served by the additional capacity available at the SH 135/Virginia Street intersection's traffic signal. Other possible mitigation could include converting the SH 135/Virginia Street intersection to right-in/right-out and signalizing the SH 135/Georgia Avenue intersection.

2027 Total Traffic

SH 135/Georgia Avenue: The eastbound approach at the intersection is projected to operate at LOS E (with an average delay of 43 seconds per vehicle) during the morning peak hour and LOS F (with an average delay of over 700 seconds per vehicle) during the afternoon peak hour. The westbound approach at the intersection is projected to operate at LOS E (with an average delay of 35 seconds per vehicle) during the morning peak hour and LOS F (with an average delay of over 400 seconds per vehicle) during the afternoon peak hour. This intersection is not a likely candidate for signalization, due to its proximity to the existing traffic signal at the SH 135/Virginia Street intersection. If the SH 135/Georgia Avenue inter-
section were restricted to a right-in/right-out or three-quarter movement, the intersection is projected to operate at acceptable levels of service. The eastbound and westbound left-turn and through movements at this intersection could be served by the additional capacity available at the SH 135/Virginia Street intersection's traffic signal. Other possible mitigation could include converting the SH 135/Virginia Street intersection to right-in/right-out and signalizing the SH 135/Georgia Avenue intersection.

TRAFFIC SIGNAL PROGRESSION EFFICIENCY

Generally speaking, the proposed traffic signals are fairly well spaced, but some are not within 200 feet of the one-half mile spacing preferred by CDOT. In this situation, the Colorado State Highway Access Code requires a minimum 35 percent progression efficiency. A traffic signal progression efficiency analysis was conducted for US 50 from New York Street through the proposed Gunnison Rising traffic signals. The time/space diagrams for the traffic signal progression efficiency analysis are attached in Appendix C.

As shown on Table 4, the progression efficiencies on US 50 from New York Street through the proposed Gunnison Rising traffic signals are expected to meet or exceed CDOT's 35 percent requirement.

The progression efficiencies shown on Table 4 assume that the section of US 50 between Adams Street and the Residential Village development will be an extension of the five-lane urban cross section to the west, with curb and gutter and a posted speed limit of 45 mph . US 50 is proposed as one through lane in each direction with a rural cross section to the east of the Residential Village development, and with shoulders and roadside ditches. Posting this rural section at either 45 or 65 mph would result in a progression efficiency of approximately 41.5 percent. Posting this rural section at 55 mph would result in a progression efficiency of 35 percent.

October 2006 Existing Traffic Adjusted Upward to Reflect Peak Summer Traffic

Gunnison Rising - "Authentically Colorado'

Intersection	Traffic Control	Peak Hour	Seasonally Adjusted Existing Traffic												
			Intersection LOS	EB ${ }^{(1)}$			WB			NB			SB		
				LT	TH	RT									
US Highway 50/	Traffic Signal	AM	A	B	B	B	B	B	B	A	A	A	A	A	A
New York Street ${ }^{(2)}$		PM	A	B	B	B	B	B	B	A	A	A	A	A	A
US Highway 50/	Traffic Signal	AM	A	A	A	A	A	A	A	C	C	C	C	C	C
Spruce Street		PM	A	A	A	A	A	A	A	C	C	C	C	C	C
US Highway 50/	Traffic Signal	AM	B	A	A	A	B	B	B	C	C	C	C	B	B
State Highway 135		PM	B	B	B	B	B	B	B	C	C	C	B	B	B
US Highway 50/	TWSC ${ }^{(3)}$	AM	-	A	free	free	A	free	free	C	C	C	C	C	A
Colorado Street		PM	-	A	free	free	A	free	free	C	C	C	C	C	B
US Highway 50/	TWSC	AM	-	A	free	free	A	free	free	B	B	B	C	C	A
Adams Street		PM	-	A	free	free	A	free	free	C	C	C	C	C	A
US Highway 50/	AWSC ${ }^{(4)}$	AM	-	A	free	free	-	free	free	-	-	-	A	-	A
County Road 72 West		PM	-	A	free	free	-	free	free	-	-	-	A	-	A
US Highway 50/	AWSC	AM	-	A	free	-	-	free	free	-	-	-	A	-	A
Best Western Access		PM	-	A	free	-	-	free	free	-	-	-	A	-	A
US Highway 50/	AWSC	AM	-	A	free	free	-	free	free	-	-	-	A	-	A
County Road 72 East		PM	-	A	free	free	-	free	free	-	-	-	A	-	A
US Highway 50/	AWSC	AM	-	-	free	free	A	A	-	B	-	B	-	-	-
Industrial Park Road		PM	-	-	free	free	A	A	-	B	-	B	-	-	-
State Highway 135/	Traffic Signal	AM	A	C	C	C	C	C	C	A	A	A	A	A	A
Virginia Street		PM	A	C	C	C	C	C	C	A	A	A	A	A	A
State Highway 135/	TWSC	AM	-	B	B	B	B	B	B	A	free	free	A	free	free
Georgia Avenue		PM	-	D	D	D	C	C	C	A	free	free	A	free	free
State Highway 135/	Traffic Signal	AM	A	C	C	C	C	C	C	A	A	A	A	A	A
Spencer Avenue		PM	A	C	C	B	C	C	B	A	A	A	A	A	A
Colorado Street/	AWSC	AM	-	A	A	A	A	A	A	A	A	A	A	A	A
Georgia Avenue		PM	-	A	A	A	A	A	A	A	A	A	A	A	A
Colorado Street/	AWSC	AM	-	-	-	-	A	-	A	-	A	A	A	A	-
Escalante Drive		PM	-	-	-	-	A	-	A	-	A	A	A	A	-

Notes:
(1) $\mathrm{EB}=$ eastbound, $\mathrm{WB}=$ westbound, $\mathrm{NB}=$ northbound, $\mathrm{SB}=$ southbound, $\mathrm{LT}=$ left turn, $\mathrm{TH}=$ through, $\mathrm{RT}=$ right turn
(2) US Highway 50 is oriented north/south and New York Street is oriented east/west at this intersection.
(3) TWSC = two-way stop-sign control
(4) AWSC = all-way stop-sign control

Table 2b

Levels of Service
2027 Background Traffic
Gunnison Rising - "Authentically Colorado"

Intersection	Traffic Control	Peak Hour	2027 Background Traffic												
			Intersection	EB ${ }^{(1)}$			WB			NB			SB		
			LOS	LT	TH	RT									
US Hlghway 50/	Traffic Signal	AM	A	B	B	B	B	B	B	A	A	A	A	A	A
New York Street ${ }^{(2)}$		PM	A	B	B	B	B	B	B	A	A	A	A	A	A
US Highway 50/	Traffic Signal	AM	A	A	A	A	A	A	A	C	C	C	C	C	C
Spruce Street		PM	A	A	A	A	A	A	A	c	c	c	c	c	c
US Highway 50/	Traffic Signal	AM	B	A	A	A	B	B	B	C	C	C	C	C	C
State Highway 135		PM	C	D	A	A	B	B	B	C	C	C	D	C	C
US Highway 50/	TWSC ${ }^{(3)}$	AM	-	A	free	free	A	free	free	D	D	D	D	D	B
Colorado Street		PM	-	A	free	free	A	free	free	F (50.1s)	F (50.1s)	F (50.1s)	F (59.9s)	F (59.9s)	B
US Highway 50/	TWSC	AM	-	A	free	free	A	free	free	D	D	D	E (36.4s)	E (36.4s)	B
Adams Street		PM	-	A	free	free	A	free	free	E (41.5s)	E (41.5s)	E (41.5s)	D	D	B
US Highway 50/	AWSC ${ }^{(4)}$	AM	-	A	free	-	-	free	free	-	-	-	B	-	B
County Road 72 West		PM	-	A	free	-	-	free	free	-	-	-	B	-	B
US Highway 50/	AWSC	AM	-	A	free	-	-	free	free	-	-	-	B	-	B
Best Western Access		PM	-	A	free	-	-	free	free	-	-	-	B	-	B
US Highway 50/	AWSC	AM	-	A	free	free	-	free	free	-	-	-	B	-	B
County Road 72 East		PM	-	A	free	free	-	free	free	-	-	-	B	-	B
US Highway 50/	AWSC	AM	-	A	free	-	-	free	free	-	-	-	B	-	B
Future West Off-Site Access		PM	-	A	free	-	-	free	free	-	-	-	C	-	B
US Highway 50/	AWSC	AM	-	A	free	-	-	free	free	-	-	-	B	-	B
Future East Off-Site Access		PM	-	A	free	-	-	free	free	-	-	-	C	-	B
State Highway 135/	AWSC	AM	-	-	free	free	A	A	-	B	-	B	-	-	-
Industrial Park Road		PM	-	-	free	free	A	A	-	B	-	B	-	-	-
State Highway 135/	Traffic Signal	AM	A	C	C	C	C	C	C	A	A	A	A	A	A
Virginia Street		PM	A	B	B	B	B	B	B	A	A	A	A	A	A
State Highway 135/	TWSC	AM	-	D	D	D	C	C	C	A	free	free	A	free	free
Georgia Avenue ${ }^{(5)}$		PM	-	F (116.4s)	$F(116.4 s)$	F (116.4s)	E (49.6s)	E (49.6s)	E (49.6s)	A	free	free	A	free	free
State Highway 135/	Traffic Signal	AM	A	C	C	B	C	C	B	A	A	A	A	A	A
Spencer Avenue		PM	A	C	C	B	C	C	B	A	A	A	A	A	A
State Highway 135/	TWSC	AM	-	-	-	B	-	-	B	A	free	free	A	free	free
Colorado Street		PM	-	-	-	B	-	-	B	B	free	free	A	free	free
Colorado Street/	AWSC	AM	-	A	A	A	A	A	A	A	A	A	A	A	A
Georgia Avenue		PM	-	A	A	A	A	A	A	A	A	A	A	A	A
Colorado Street/	AWSC	AM	-	-	-	-	A	-	A	-	A	A	A	A	-
Escalante Drive		PM	-	-	-	-	A	-	A	-	A	A	A	A	-

Notes:
(1) $\mathrm{EB}=$ eastbound, $\mathrm{WB}=$ westbound, $\mathrm{NB}=$ northbound, $\mathrm{SB}=$ southbound, $\mathrm{LT}=$ left turn, $\mathrm{TH}=$ through, $\mathrm{RT}=$ right turn
(2) US Highway 50 is oriented north/south and New York Street is oriented east/west at this intersection.
(3) TWSC = two-way stop-sign control
(4) AWSC = all-way stop-sign control
(5) Potential mitigation could be conversion to a three-quarter or right-in/right-out intersection. Another option would be to signalize this intersection and then convert the SH $135 /$ Virginia intersection to three-quarter or right-in/right-out.

Source: LSC Transportation Consultants, Inc.

Intersection	Traffic Control	Peak Hour	Table 2cLevels of Service2027 Total TrafficGunnison Rising - "Authentically Colorado"												
			2027 Total Traffic												
			Intersection	EB ${ }^{(1)}$			WB			NB			SB		
			LOS	LT	TH	RT									
US Highway 50/	Traffic Signal	AM	A	D	D	D	D		D	A	A	A	A	A	A
New York Street ${ }^{(2)}$		PM	A	D	D	D	D	D	D	A	A	A	A	A	A
US Highway 50/	Traffic Signal	AM	A	A	A	A	A	A	A	D	D	C	D	D	C
Spruce Street		PM	B	A	B	A	A	A	A	C	C	C	D	D	C
US Highway 50/	Traffic Signal	AM	B	C	A	A	A	B	B	D	D	D	D	B	B
State Highway 135		PM	C	D	B	B	B	D	C	D	D	D	D	C	C
US Highway 50/	Traffic Signal	AM	B	A	A	A	A	A	A	D	D	D	D	D	D
Colorado Street		PM	B	B	B	B	A	A	A	D	D	D	D	D	D
US Highway 50/	Traffic Signal	AM	A	B	A	A	A	A	A	D	D	D	D	D	D
Adams Street		PM	A	B	A	A	A	A	A	D	D	D	D	D	D
US Highway 50/	Traffic Signal	AM	A	A	A	A	A	A	A	D	C	C	D	D	D
West Commercial Access		PM	C	D	A	A	B	C	B	D	C	C	D	D	D
US Highway 50/	AWSC ${ }^{(3)}$	AM	-	B	free	-	-	free	free	-	-	-	C	-	B
Residential Village Access		PM	-	B	free	-	-	free	free	-	-	-	D	-	C
US Highway 50/	TWSC ${ }^{(4)}$	AM	-	A	free	free	A	free	free	C	C	C	C	C	c
County Road 72 West		PM	-	B	free	free	B	free	free	D	C	c	D	C	c
US Highway 50/	AWSC	AM	-	A	free	-	-	free	free	-	-	-	C	-	C
Best Western Access		PM	-	B	free	-	-	free	free	-	-	-	C	-	c
US Highway 50/	TWSC	AM	-	A	free	free	A	free	free	C	B	B	C	C	c
County Road 72 East		PM	-	B	free	free	B	free	free	D	C	C	D	c	c
US Highway 50/	Traffic Signal	AM	B	A	A	A	A	A	A	D	c	c	C	c	c
Future West Off-Site Access		PM	A	A	A	A	A	A	A	D	D	D	D	D	D
US Highway 50	Traffic Signal	AM	B	A	A	C	A	B	B	C	c	C	D	D	D
Future East Off-Site Access		PM	C	A	A	C	A	B	B	D	C	C	D	D	D
State Highway 135/	AWSC	AM	-	-	free	free	A	free	-	B	-	B	-	-	-
Industrial Park Road		PM	-	-	free	free	A	free	-	B	-	B	-	-	-
State Highway 135/	Traffic Signal	AM	B	D	D	D	D	D	D	A	A	A	A	A	A
Virginia Street		PM	B	D	D	D	C	C	C	A	A	A	A	A	A
State Highway 135/	TWSC	AM	-	E (42.5s)	$E(42.5 \mathrm{~s})$	$E(42.5 \mathrm{~s})$	$E(35.18)$	$E(35.15)$	E (35.1s)	A	free	free	A	free	free
Georgia Avenue ${ }^{(5)}$		PM	-	F (771.6s)	$F(771.6 \mathrm{~s})$	$F(771.6 \mathrm{~s})$	$F(401.8 \mathrm{~s})$	F (401.8s)	F (401.8s)	B	free	free	B	free	free
State Highway 135/	Traffic Signal	AM	B	D	D	D	D	D	D	A	A	B	A	A	A
Spencer Avenue		PM	B	D	D	C	D	D	c	A	A	B	A	A	A
State Highway 135/	TWSC	AM	-	-	-	B	-	-	B	A	free	free	A	free	free
Colorado Street		PM	-	-	-	C	-	-	B	B	free	free	A	free	free
Colorado Street/	AWSC	AM	-	A	A	A	A	A	A	A	A	A	A	A	A
Georgia Avenue		PM	-	B	B	B	B	B	B	B	B	B	B	B	B
Colorado Street/	AWSC	AM	-	-	-	-	A	-	A	-	A	A	A	A	-
Escalante Drive		PM	-	-	-	-	B	-	B	-	A	A	B	B	-

Notes:
(1) $\mathrm{EB}=$ eastbound, $\mathrm{WB}=$ westbound, $\mathrm{NB}=$ northbound, $\mathrm{SB}=$ southbound, $\mathrm{LT}=$ left turn, $\mathrm{TH}=$ through, $\mathrm{RT}=$ right turn
(2) US Highway 50 is oriented north/south and New York Street is oriented east/west at this intersection.

SC = al-way stop-sign control
(5) Potential mitigation could be conversion to a three-quarter or right-in/right-out intersection. Another option would be to signalize this intersection and then convert the SH 135 /Virginia intersection to three-quarter or right-in/right-out

Source: LSC Transportation Consultants, Inc.

```Table 3 \\ Time Horizon For Improvements Gunnison Rising - "Authentically Colorado"```		
Time Horizon	Required Geometry and Traffic Control ${ }^{(1)}$	Responsibility
2027 Background Traffic ${ }^{(2)}$	US Highway 50 Improvements	
	Add WB RT ${ }^{(3)}$ and EB RT deceleration lane at Spruce Street and Adams Street. Add WB RT deceleration lane at Colorado Street.	Others ${ }^{(4)}$
	Add EB LT deceleration lane and separate SB RT and LT lanes at the east and west off-site access aligning with the Gunnison Rising recreational vehicle park access and east commercial access.	Others
	State Highway 135 Improvements	
	Add SB RT deceleration lane at Spencer Avenue. Add west leg and convert intersection to three-quarter movement at Colorado Street.	Others
2027 Total Traffic	US Highway 50 Improvements	
	Convert traffic control from TWSC ${ }^{(5)}$ to traffic signal control at Adams Street. ${ }^{(6)}$	Others with contribution from Gunnison Rising
	Convert traffic control from TWSC to traffic signal control at Colorado Street. ${ }^{(7)}$	Others with contribution from Gunnison Rising
	Construct all of the improvements shown of Figure 8a that are not included above as 2027 background improvements.	Gunnison Rising
	State Highway 135 Improvements	
	Construct all of the improvements shown on Figure 8b.	Gunnison Rising with contribution from Others
	Convert Georgia Avenue intersection to three-quarter or right-in/right-out or signalize Georgia Avenue intersection and convert Virginia Avenue intersection to three-quarter or right-in/right-out.	Gunnison Rising with contribution from Others
Notes:   (1) To achieve the levels of service shown on Tables $2 b$ and $2 c$   (2) All of the 2027 background traffic improvements were based on the "CDOT State Highway Access Code" requirements, and are not required to achieve acceptable levels of service.   (3) $\mathrm{NB}=$ northbound, $\mathrm{SB}=$ southbound, $\mathrm{EB}=$ eastbound, WB = westbound, $\mathrm{RT}=$ right turn, $\mathrm{LT}=$ left turn, $\mathrm{TH}=$ through   (4) Others could be future developments and/or state and local funding.   (5) TWSC = two-way stop-sign control   (6) Adams Street is about one-half mile east of the existing State Highway 135 traffic signal and one-half mile west of the proposed Colorado Rising west commercial access traffic signal.   (7) Colorado Street falls between the one-half mile spaced intersections of State Highway 135 and Adams Street. This intersection is critical for the relief of State Highway 135 and the US Highway 50/State Highway 135 intersection. Figure 4 shows the progression efficiency achievable along US Highway 50 can meet or exceed the CDOT requirement of 35 percent with this non-standard traffic signal spacing.		




US Highway 50 Progression Efficiency Gunnison Rising - "Authentically Colorado"			
Timeline	Progression Efficiency From New York Street to the East		
	45 mph posted speed on US Highway 50 east of the proposed Residential Village access	55 mph posted speed on US Highway 50 east of the proposed Residential Village access	65 mph posted speed on US Highway 50 east of the proposed Residential Village access
2027 Background	41.5 Percent	35.0 Percent	41.5 Percent
2027 Total Traffic	41.5 Percent	35.0 Percent	41.5 Percent

## LOCAL NEIGHBORHOOD TRAFFIC IMPACTS

A majority of the site-generated traffic volume is expected to access the site via US 50. Secondary local site access would be to and from the west via Georgia Avenue and Escalante Drive. Escalante Drive is currently a private college street that has no way to restrict non-college traffic. There is little non-college traffic currently using Escalante Drive due to the layout of the existing street system. With an eastern extension of Georgia Avenue it will be more attractive for non-college traffic to use Escalante Drive as an additional east/west route. If Escalante Drive remains private and unimproved, there will likely be less traffic using Escalante than predicted in this analysis. It is expected that traffic capacity will be adequate on Georgia Avenue to accommodate the projected future traffic with or without improvements to Escalante Drive.

From Georgia Avenue and Escalante Drive, it is expected that the site-generated traffic would use Colorado Street to distribute north and south. The site-generated traffic that has an origin or destination east of SH 135 is expected to use the local street grid between Colorado Street and SH 135. The site-generated traffic that has an origin or destination on or west of SH 135 is expected to use Colorado Street to access the existing SH 135 traffic signals at Virginia Street, Denver Street, and Spencer Avenue.

## CDOT STATE HIGHWAY ACCESS PERMIT

It is expected that site specific traffic studies will be completed for the various phases of the project in order to obtain any necessary CDOT State Highway Access Permits.

## Conclusions and Recommendations

The following conclusions and recommendations were drawn regarding the traffic impacts of the proposed Gunnison Rising - "Authentically Colorado" mixed-use development.

## TRIP GENERATION

Buildout of the site is projected to generate about 34,895 vehicle-trips during a typical weekday, with about half of the vehicles entering and half of the vehicles exiting the site. During the weekday morning peak hour, about 1,250 vehicles would enter and 1,120 vehicles would exit the site. During the weekday afternoon peak hour, about 1,715 vehicles would enter and 1,765 vehicles would exit the site.

Buildout of the site is projected to generate about 33,390 vehicle-trips during a typical Saturday, with about half of the vehicles entering and half of the vehicles exiting the site. During the Saturday mid-day peak hour, about 1,730 vehicles would enter and 1,485 vehicles would exit the site.

## WEEKDAY AND SATURDAY TRAFFIC COMPARISON

The existing and projected site-generated traffic volumes are expected to be higher during the typical weekday than during the typical Saturday. For this reason, the weekday scenario was analyzed in detail.

## PROJECTED LEVELS OF SERVICE

All of the movements at the analyzed signalized intersections are projected to operate at acceptable levels of service (LOS) during the peak hours through the year 2027 with the recommended roadway improvements. A few of the movements at the analyzed stop-sign controlled intersections are projected to operate at LOS E or F during the peak hours with the recommended roadway improvements.

## TRAFFIC SIGNAL PROGRESSION EFFICIENCY

Generally speaking, the proposed traffic signals are fairly well spaced, but some are not within 200 feet of the one-half mile spacing preferred by CDOT, which requires a progression efficiency analysis. The progression efficiencies on US 50 from New York Street through the proposed Gunnison Rising traffic signals are expected to meet or exceed CDOT's requirement of 35 percent.

The progression efficiencies assume that the section of US 50 between Adams Street and the Residential Village development will be an extension of the existing five-lane urban cross section to the west, with curb and gutter and a posted speed limit of 45 mph . US 50 is proposed as one through lane in each direction with a rural cross section to the east of the Residential Village development, and with shoulders and roadside ditches. Posting this rural section at either 45 or 65 mph would result in a progression efficiency of approximately 41.5 percent. Posting this rural section at 55 mph would result in a progression efficiency of 35 percent.

## RECOMMENDED ROADWAY IMPROVEMENTS

The roadway improvements required to achieve the levels of service shown on Tables $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c are detailed on Table 3, along with a suggested party responsible for funding each roadway improvement. Figures 8 a and $8 b$ show the majority of the recommended roadway improvements.

## LOCAL NEIGHBORHOOD TRAFFIC IMPACTS

A majority of the site-generated traffic volume is expected to access the site via US 50. Secondary local site access would be to and from the west via Georgia Avenue and Escalante Drive. Escalante Drive is currently a private college street that has no way to restrict non-college traffic. There is little non-college traffic currently using Escalante Drive due to the layout of the existing street system. With an eastern extension of Georgia Avenue it will be more attractive for non-college traffic to use Escalante Drive as an additional east/west route. If Escalante Drive remains private and unimproved, there will likely be less traffic using Escalante than predicted in this analysis. It is expected that traffic capacity will be adequate
on Georgia Avenue to accommodate the projected future traffic with or without improvements to Escalante Drive.

From Georgia Avenue and Escalante Drive, it is expected that the site-generated traffic would use Colorado Street to distribute north and south. The site-generated traffic that has an origin or destination east of SH 135 is expected to use the local street grid between Colorado Street and SH 135. The site-generated traffic that has an origin or destination on or west of SH 135 is expected to use Colorado Street to access the existing SH 135 traffic signals at Virginia Street, Denver Street, and Spencer Avenue.

## CDOT STATE HIGHWAY ACCESS PERMIT

It is expected that site specific traffic studies will be completed for the various phases of the project in order to obtain any necessary CDOT State Highway Access Permits.

## Appendix A: Traffic Count Reports

## LSC Transportation Consultants Inc. <br> Intersection Counts

516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@Isccs.com

File Name : New York 22
Site Code : 01003061
Start Date : 10/03/2006
Page No : 1

Groups Printed- Unshifted

	Highway 50 North				New York Ave East				$\begin{aligned} & \text { Highway } 50 \\ & \text { South } \end{aligned}$				New York Ave West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	4	22	0	0	0	0	0	0	0	26	0	0	1	1	6	0	60
06:45 AM	2	27	1	0	0	1	0	0	1	63	3	0	3	1	5	0	107
Total	6	49	1	0	0	1	0	0	1	89	3	0	4	2	11	0	167


07:00 AM	1	36	0	0	2	0	3	0	0	58	0	0	2	1	16	0	119
07:15 AM	5	52	1	0	1	0	0	0	0	82	2	0	0	1	13	0	157
07:30 AM	4	35	1	0	0	1	0	0	1	79	1	0	2	2	16	0	142
07:45 AM	4	67	4	0	4	1	2	0	0	155	4	0	6	1	19	0	267
Total	14	190	6	0	7	2	5	0	1	374	7	0	10	5	64	0	685
08:00 AM	3	75	1	0	2	1	2	0	0	146	8	0	1	4	14	0	257
08:15 AM	8	73	4	0	4	1	4	0	1	110	2	0	7	1	10	0	225
Grand Total	31	387	12	0	13	5	11	0	3	719	20	0	22	12	99	0	1334
Apprch \%	7.2	90.0	2.8	0.0	44.8	17.2	37.9	0.0	0.4	96.9	2.7	0.0	16.5	9.0	74.4	0.0	
Total \%	2.3	29.0	0.9	0.0	1.0	0.4	0.8	0.0	0.2	53.9	1.5	0.0	1.6	0.9	7.4	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
File Name : New York 22
Site Code : 01003061
Start Date : 10/03/2006
Page No : 2

	Highway 50 North					New York Ave East					Highway 50 South					New York Ave West					
Start   Time	$\begin{gathered} \text { Rig } \\ \mathrm{ht} \end{gathered}$	$\begin{gathered} \hline \mathrm{Thr} \\ \mathrm{u} \\ \hline \end{gathered}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \mathrm{Rig} \\ \mathrm{ht} \end{gathered}$	Thr u	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \\ \hline \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \text { ht } \end{array}$	$\begin{array}{r} \hline \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	Ped	App. Total	Int. Total



## LSC Transportation Consultants Inc. <br> Intersection Counts

516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : New York 21
Site Code : 01002062
Start Date : 10/02/2006
Page No : 1
E-mail: Isc@Isccs.com

	Highway 50 North				New York Ave East				$\begin{gathered} \text { Highway } 50 \\ \text { South } \end{gathered}$				New York Ave West				
Start Time	Right	Thru	Left	Peds	$\begin{gathered} \operatorname{lnt} . \\ \text { Total } \end{gathered}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	11	101	3	0	2	5	1	0	1	76	4	0	3	0	9	0	216
04:30 PM	14	99	4	0	4	1	7	0	1	86	5	0	3	2	12	0	238
04:45 PM	3	105	3	0	1	1	3	0	1	103	5	0	3	2	15	0	245
Total	28	305	10	0	7	7	11	0	3	265	14	0	9	4	36	0	699


05:00 PM	8	144	8	0	6	5	8	0	1	123	2	0	4	3	12	0	324
05:15 PM	17	126	0	0	2	7	10	0	1	75	4	0	1	2	14	0	259
05:30 PM	12	106	1	0	4	3	11	0	0	91	5	0	4	4	18	0	259
05:45 PM	12	122	5	0	1	6	3	0	0	91	2	0	2	4	10	0	258
Total	49	498	14	0	13	21	32	0	2	380	13	0	11	13	54	0	1100
06:00 PM	11	135	3	0	4	7	3	0	0	72	2	0	3	1	18	0	259
Grand Total	88	938	27	0	24	35	46	0	5	717	29	0	23	18	108	0	2058
Apprch \%	8.4	89.1	2.6	0.0	22.9	33.3	43.8	0.0	0.7	95.5	3.9	0.0	15.4	12.1	72.5	0.0	
Total \%	4.3	45.6	1.3	0.0	1.2	1.7	2.2	0.0	0.2	34.8	1.4	0.0	1.1	0.9	5.2	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
File Name : New York 21
Site Code : 01002062
Start Date : 10/02/2006
Page No : 2


## LSC Transportation Consultants Inc.

Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Spruce 1
Site Code : 00915061
Start Date : 09/15/2006
E-mail: Isc@Isccs.com

	Spruce St North				Highway 50 East				$\begin{gathered} \text { Spruce St } \\ \text { South } \end{gathered}$				Highway 50 West				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	0	1	0	0	33	2	0	0	0	0	0	0	45	0	0	81
06:45 AM	2	1	1	0	0	46	1	0	1	0	0	0	0	74	1	0	127
Total	2	1	2	0	0	79	3	0	1	0	0	0	0	119	1	0	208


| $07: 00 \mathrm{AM}$ | 2 | 2 | 3 | 0 | 0 | 52 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 78 | 1 | 0 | 142 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $07: 15 \mathrm{AM}$ | 1 | 2 | 0 | 0 | 2 | 77 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 91 | 1 | 0 | 177 |
| $07: 30 \mathrm{AM}$ | 4 | 2 | 1 | 0 | 4 | 89 | 3 | 0 | 3 | 1 | 3 | 0 | 1 | 96 | 1 | 0 | 208 |
| $07: 45 \mathrm{AM}$ | 5 | 2 | 5 | 0 | 2 | 103 | 5 | 0 | 1 | 3 | 4 | 0 | 5 | 184 | 5 |  |  |
| Total | 12 | 8 | 9 | 0 | 8 | 321 | 9 | 0 | 5 | 4 | 9 | 0 | 9 | 449 | 8 | 0 | 824 |


| 08:00 AM | 4 | 2 | 3 | 0 | 3 | 91 | 2 | 0 | 2 | 3 | 3 | 0 | 6 | 140 | 6 | 0 | 265 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 08:15 AM | 4 | 3 | 4 | 0 | 1 | 122 | 4 | 0 | 2 | 3 | 6 | 0 | 7 | 102 | 1 | 0 | 259 |
| Grand Total | 22 | 14 | 18 | 0 | 12 | 613 | 18 | 0 | 10 | 10 | 18 | 0 | 22 | 810 | 16 | 0 | 1583 |
| Apprch \% | 40.7 | 25.9 | 33.3 | 0.0 | 1.9 | 95.3 | 2.8 | 0.0 | 26.3 | 26.3 | 47.4 | 0.0 | 2.6 | 95.5 | 1.9 | 0.0 |  |
| Total \% | 1.4 | 0.9 | 1.1 | 0.0 | 0.8 | 38.7 | 1.1 | 0.0 | 0.6 | 0.6 | 1.1 | 0.0 | 1.4 | 51.2 | 1.0 | 0.0 |  |

LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name : Spruce 1
Site Code : 00915061
Phone (719) 633-2868
Start Date : 09/15/2006
E-mail: Isc@|sccs.com

Page No : 2

	Spruce St North					$\text { Highway } 50$ East					Spruce St South					Highway 50 West					
Start   Time	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \text { s } \end{array}$	App.   Total	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \hline \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	Rig	Thr   u	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \\ \hline \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ \text { u } \\ \hline \end{array}$	Left	Ped	App.   Total	$\begin{array}{r} \ln \mathrm{t} . \\ \text { Total } \end{array}$

Peak Hour From 06:30 AM to 08:15 AM - Peak 1 of 1


	9/15/06 7:30:00 AM 9/15/06 8:15:00 AM   Unshifted	

## LSC Transportation Consultants Inc.

Intersection Counts
516 N. Tejon St.
File Name: Spruce 2
Site Code : 00918062
Colorado Springs, CO 80903
Start Date: 09/18/2006
Phone (719) 633-2868
Page No : 1
E-mail: Isc@Isccs.com

	Spruce St   North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				Spruce StSouth				Highway 50West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r}\text { Int. } \\ \text { Total } \\ \hline\end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	5	3	2	0	7	139	7	0	3	6	4	0	5	149	5	0	335
04:30 PM	8	2	6	0	1	161	10	0	2	6	5	0	2	133	8	0	344
04:45 PM	5	4	10	0	10	147	0	0	6	2	8	0	1	160	4	0	357
Total	18	9	18	0	18	447	17	0	11	14	17	0	8	442	17	0	1036


05:00 PM	19	8	8	0	4	192	6	0	9	7	17	0	4	176	5	0	455
$05: 15 \mathrm{PM}$	15	2	7	0	8	147	1	0	3	0	16	0	6	137	6	0	348
$05: 30 \mathrm{PM}$	11	6	5	0	3	180	0	0	3	0	6	0	4	116	5	0	339
$05: 45 \mathrm{PM}$	7	3	8	0	15	170	1	0	2	2	12	0	4	150	13	0	387
Total	52	19	28	0	30	689	8	0	17	9	51	0	18	579	29	0	1529


|  |  | 9 | 9 | 0 | 6 | 158 | 4 | 0 | 1 | 5 | 9 | 0 | 3 | 123 | 5 | 0 | 343 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Grand Total | 81 | 37 | 55 | 0 | 54 | 1294 | 29 | 0 | 29 | 28 | 77 | 0 | 29 | 1144 | 51 | 0 | 2908 |
| Apprch \% | 46.8 | 21.4 | 31.8 | 0.0 | 3.9 | 94.0 | 2.1 | 0.0 | 21.6 | 20.9 | 57.5 | 0.0 | 2.4 | 93.5 | 4.2 | 0.0 |  |
| Total \% | 2.8 | 1.3 | 1.9 | 0.0 | 1.9 | 44.5 | 1.0 | 0.0 | 1.0 | 1.0 | 2.6 | 0.0 | 1.0 | 39.3 | 1.8 | 0.0 |  |

File Name : Spruce 2
Site Code : 00918062
Start Date : 09/18/2006
Page No : 2

	$\begin{gathered} \text { Spruce St } \\ \text { North } \end{gathered}$					Highway 50 East					Spruce St South					Highway 50 West					
Start   Time	Rig	$\begin{array}{r} \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	Rig ht	$\begin{array}{r\|} \hline \mathrm{Thr} \\ u \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	Ped	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	Thr u	Left	Ped	App.   Total	Int. Total



LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Main 1
Site Code : 00913061
Start Date : 09/13/2006
E-mail: Isc@lsccs.com
Page No : 1

	Main St North				$\underset{\text { East }}{\text { Highway }} 50$				Main St South				Highway 50 West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	12	0	10	0	15	26	0	0	0	1	1	0	1	23	26	0	115
06:45 AM	20	4	9	0	15	38	0	0	1	2	1	0	1	48	36	0	175
Total	32	4	19	0	30	64	0	0	,	3	2	0	2	71	62	0	290


07:00 AM	34	3	14	0	15	35	0	0	0	5	0	0	0	34	36	0	176
07:15 AM	27	1	17	0	17	51	2	0	2	2	2	0	0	55	54	0	230
07:30 AM	40	3	19	0	20	49	1	0	2	3	1	0	0	47	58	0	243
07:45 AM	43	7	22	0	38	75	0	0	3	6	5	0	2	107	59	0	367
Total	144	14	72	0	90	210	3	0	7	16	8	0	2	243	207	0	1016
08:00 AM	53	4	10	0	28	91	2	0	6	4	2	0	3	78	45	0	326
08:15 AM	38	5	25	0	14	62	1	0	4	9	2	0	3	67	52	0	282
Grand Total	267	27	126	0	162	427	6	0	18	32	14	0	10	459	366	0	1914
Apprch \%	63.6	6.4	30.0	0.0	27.2	71.8	1.0	0.0	28.1	50.0	21.9	0.0	1.2	55.0	43.8	0.0	
Total \%	13.9	1.4	6.6	0.0	8.5	22.3	0.3	0.0	0.9	1.7	0.7	0.0	0.5	24.0	19.1	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
File Name : Main 1
Site Code : 00913061
Colorado Springs, CO 80903
Start Date: 09/13/2006
Phone (719) 633-2868
Page No : 2



LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
File Name : Main 2
Site Code : 00913062
Start Date : 09/13/2006
Phone (719) 633-2868
Page No : 1
E-mail: Isc@lsccs.com

	Main St North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				Main St South				$\begin{gathered} \text { Highway } 50 \\ \text { West } \end{gathered}$				
Start Time	Right	Thru	Left	Peds	Int. Total												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	65	4	23	0	26	81	4	0	4	2	3	0	4	78	57	0	351
04:30 PM	73	9	34	0	33	95	4	0		10	4	0	3	79	53	0	398
04:45 PM	79	6	28	0	30	96	3	0	3	10	5	0	4	67	64	0	395
Total	217	19	85	0	89	272	11	0	8	22	12	0	11	224	174	0	1144


| $05: 00 \mathrm{PM}$ | 85 | 12 | 52 | 0 | 29 | 108 | 4 | 0 | 3 | 11 | 3 | 0 | 9 | 77 | 73 | 0 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $05: 15 \mathrm{PM}$ | 71 | 14 | 29 | 0 | 25 | 98 | 5 | 0 | 5 | 9 | 3 | 0 | 5 | 76 | 59 | 0 | 396 |
| $05: 30 \mathrm{PM}$ | 97 | 8 | 38 | 0 | 29 | 97 | 2 | 0 | 6 | 14 | 7 | 0 | 3 | 75 | 60 | 0 | 436 |
| $05: 45 \mathrm{PM}$ | 65 | 10 | 30 | 0 | 31 | 102 | 5 | 0 | 4 | 8 | 6 | 0 | 4 | 78 | 57 | 0 | 400 |
| Total | 318 | 44 | 149 | 0 | 114 | 405 | 16 | 0 | 18 | 42 | 19 | 0 | 21 | 306 | 249 | 0 | 1701 |


06:00 PM	72	11	22	0	16	98	3	0	6	10	3	0	11	59	53	0
Grand Total	607	74	256	0	219	775	30	0	32	74	34	0	43	589	476	0
Apprch \%	64.8	7.9	27.3	0.0	21.4	75.7	2.9	0.0	22.9	52.9	24.3	0.0	3.9	53.2	43.0	0.0
Total \%	18.9	2.3	8.0	0.0	6.8	24.2	0.9	0.0	1.0	2.3	1.1	0.0	1.3	18.4	14.8	0.0

LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name : Main 2
Site Code : 00913062
Phone (719) 633-2868
Start Date : 09/13/2006
Page No : 2
E-mail: Isc@Isccs.com

	Main St North					$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$					Main St South					$\begin{aligned} & \text { Highway } 50 \\ & \text { West } \end{aligned}$					
Start Time	$\begin{gathered} \hline \text { Rig } \\ \mathrm{ht} \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \mathrm{Rig} \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	$\begin{gathered} \mathrm{Thr} \\ \mathrm{u} \end{gathered}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$

Peak Hour From 04:15 PM to 06:00 PM - Peak 1 of 1



## LSC Transportation Consultants Inc.

Intersection Counts
516 N. Tejon St.
File Name : Colorado St 2
Colorado Springs, CO 80903
Phone (719) 633-2868
Site Code : 00000000
Start Date : 09/14/2006
E-mail: Isc@Isccs.com
Page No : 1
Groups Printed- Group 1

	Colorado St North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \\ \hline \end{gathered}$				$\begin{aligned} & \text { Colorado St } \\ & \text { South } \end{aligned}$				Highway 50 West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \\ \hline \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	4	1	3	0	0	26	0	0	0	1	6	0	3	30	1	0	75
06:45 AM	9	0	0	0	3	38	0	0	0	0	4	0	2	37	3	0	96
Total	13	1	3	0	3	64	0	0	0	1	10	0	5	67	4	0	171


07:00 AM	8	2	0	0	3	56	0	0	0	1	0	0	4	27	8	0	109
$07: 15 \mathrm{AM}$	5	0	2	0	2	45	1	0	0	0	4	0	6	25	13	0	103
$07: 30 \mathrm{AM}$	9	0	0	0	1	50	0	0	0	1	5	0	2	47	11	0	126
$07: 45 \mathrm{AM}$	10	1	2	0	7	70	0	0	4	1	2	0	0	93	9	0	199
Total	32	3	4	0	13	221	1	0	4	3	11	0	12	192	41	0	537


08:00 AM	8	0	3	0	9	64	3	0	2	7	5	0	0	60	10	0
$08: 15 \mathrm{AM}$	10	0	1	0	3	77	0	0	1	0	3	0	1	73	9	0
Grand Total	63	4	11	0	28	426	4	0	7	11	29	0	18	392	64	0
Apprch \%	80.8	5.1	14.1	0.0	6.1	93.0	0.9	0.0	14.9	23.4	61.7	0.0	3.8	82.7	13.5	0.0
Total \%	6.0	0.4	1.0	0.0	2.6	40.3	0.4	0.0	0.7	1.0	2.7	0.0	1.7	37.1	6.1	0.0

File Name : Colorado St 2
Site Code : 00000000
Start Date : 09/14/2006
Page No : 2


## LSC Transportation Consultants Inc.

 Intersection Counts516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@lsccs.com

File Name : Colorado St 1
Site Code : 00000000
Start Date : 09/13/2006
Page No : 1

Groups Printed- Group 1

	Colorado St North				Highway 50 East				Colorado St South				Highway 50 West				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	14	0	11	0	4	62	0	0	1	2	1	0	0	75	15	0	185
04:30 PM	19	1	5	0	2	82	2	0	0	1	0	0	3	101	10	0	226
04:45 PM	19	3	5	0	3	103	0	0	1	0	3	0	1	51	12	0	201
Total	52	4	21	0	9	247	2	0	2	3	4	0	4	227	37	0	612


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $05: 00 \mathrm{PM}$ | 17 | 2 | 9 | 0 | 2 | 87 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 101 | 10 | 0 | 233 |
| $05: 15 \mathrm{PM}$ | 20 | 1 | 4 | 0 | 2 | 81 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 77 | 10 | 0 | 200 |
| $05: 30 \mathrm{PM}$ | 20 | 1 | 6 | 0 | 2 | 67 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 75 | 6 | 0 | 180 |
| $05: 45 \mathrm{PM}$ | 23 | 0 | 8 | 0 | 11 | 120 | 1 | 0 | 0 | 3 | 1 | 0 | 2 | 91 | 19 |  |  |
| Total | 80 | 4 | 27 | 0 | 17 | 355 | 2 | 0 | 2 | 3 | 4 | 0 | 9 | 344 | 45 | 0 | 892 |


06:00 PM	24	4	11	0	3	86	3	0	0	2	2	0	2	67	10	0	214
Grand Total	156	12	59	0	29	688	7	0	4	8	10	0	15	638	92	0	1718
Apprch \%	68.7	5.3	26.0	0.0	4.0	95.0	1.0	0.0	18.2	36.4	45.5	0.0	2.0	85.6	12.3	0.0	
Total \%	9.1	0.7	3.4	0.0	1.7	40.0	0.4	0.0	0.2	0.5	0.6	0.0	0.9	37.1	5.4	0.0	

File Name : Colorado St 1
Site Code : 00000000
Start Date : 09/13/2006
Page No : 2


## LSC Transportation Consultants Inc. Intersection Counts

516 N. Tejon St.
File Name : Adams 1
Site Code : 00009141
Start Date : 09/14/2006
Phone (719) 633-2868
Page No : 1
E-mail: Isc@|sccs.com

	Adams St North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				Adams St South				Highway 50 West				
Start Time	Right	Thru	Left	Peds	Int. Total												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	15	0	4	0	6	20	0	0	0	0	0	0	0	23	9	0	77
06:45 AM	4	0	2	0	2	33	0	0	0	0	0	0	0	21	9	0	71
Total	19	0	6	0	8	53	0	0	0	0	0	0	0	44	18	0	148


07:00 AM	5	0	2	0	2	40	0	0	0	0	0	0	0	21	11	0	81
07:15 AM	10	0	1	0	3	41	0	0	0	0	0	0	0	11	13	0	79
07:30 AM	9	0	3	0	3	36	1	0	0	0	1	0	0	29	33	0	115
07:45 AM	16	0	6	0	6	71	0	0	0	0	0	0	3	33	46	0	181
Total	40	0	12	0	14	188	1	0	0	0	1	0	3	94	103	0	456


08:00 AM	16	0	3	0	6	59	0	0	0	0	0	0	1	28	35	0	148
08:15 AM	13	0	6	0	3	52	0	0	1	0	0	0	2	39	32	0	148
Grand Total	88	0	27	0	31	352	1	0	1	0	1	0	6	205	188	0	900
Apprch \%	76.5	0.0	23.5	0.0	8.1	91.7	0.3	0.0	50.0	0.0	50.0	0.0	1.5	51.4	47.1	0.0	
Total \%	9.8	0.0	3.0	0.0	3.4	39.1	0.1	0.0	0.1	0.0	0.1	0.0	0.7	22.8	20.9	0.0	

LSC Transportation Consultants Inc. Intersection Counts

File Name: Adams 1
Site Code : 00009141
Start Date: 09/14/2006
Page No : 2

	Adams St North					Highway 50 East					Adams St South					Highway 50 West					
Start Time	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \mathrm{Ped} \\ \mathrm{~s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \mathrm{Ped} \\ \mathrm{~s} \end{array}$	App. Total	$\begin{array}{r} \hline \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$

Peak Hour From 06:30 AM to 08:15 AM - Peak 1 of 1


	9/14/06 7:30:00 AM 9/14/06 8:15:00 AM   Unshifted	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
File Name : Adams 2
Site Code : 00009142
Start Date : 09/14/2006
Phone (719) 633-2868
Page No : 1
Groups Printed- Unshifted

	Adams St North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				Adams St South				$\begin{gathered} \text { Highway } 50 \\ \text { West } \end{gathered}$				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \\ \hline \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	22	0	4	0	12	51	0	0	0	0	7	0	7	60	10	0	173
04:30 PM	22	0	3	0	7	54	0	0	0	2	4	0	4	48	9	0	153
04:45 PM	21	3	8	0	4	52	0	0	2	0	3	0	8	47	14	0	162
Total	65	3	15	0	23	157	0	0	2	2	14	0	19	155	33	0	488
05:00 PM	26	0	3	0	2	58	1	0	1	0	4	0	8	60	16	0	179
05:15 PM	17	2	3	0	4	55	1	0	1	0	1	0	3	58	12	0	157
05:30 PM	15	1	5	0	6	80	0	0	0	0	5	0	9	54	14	0	189
05:45 PM	15	0	2	0	1	69	0	0	0	3	14	0	10	63	16	0	193
Total	73	3	13	0	13	262	2	0	2	3	24	0	30	235	58	0	718
06:00 PM	11	1	8	0	0	41	0	0	0	0	0	0	0	42	19	0	122
Grand Total	149	7	36	0	36	460	2	0	4	5	38	0	49	432	110	0	1328
Apprch \%	77.6	3.6	18.8	0.0	7.2	92.4	0.4	0.0	8.5	10.6	80.9	0.0	8.3	73.1	18.6	0.0	
Total \%	11.2	0.5	2.7	0.0	2.7	34.6	0.2	0.0	0.3	0.4	2.9	0.0	3.7	32.5	8.3	0.0	

LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Adams 2
Site Code : 00009142
Start Date : 09/14/2006
Page No : 2
E-mail: Isc@lsccs.com



LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name: Best Western 1
Site Code : 00000000
Phone (719) 633-2868
E-mail: Isc@lsccs.com
Start Date : 09/19/2006
Page No : 1
Groups Printed- Group 1

	Best Western Driveway North				Highway 50East				South				$\begin{gathered} \text { Highway } 50 \\ \text { West } \end{gathered}$				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \\ & \hline \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	1	0	1	0	0	12	0	0	0	0	0	0	0	15	2	0	31
06:45 AM	2	0	0	0	0	18	0	0	0	0	0	0	0	24	0	0	44
Total	3	0	1	0	0	30	0	0	0	0	0	0	0	39	2	0	75


| $07: 00 \mathrm{AM}$ | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 26 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $07: 15 \mathrm{AM}$ | 1 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 69 |
| $07: 30 \mathrm{AM}$ | 3 | 0 | 0 | 0 | 0 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 70 |
| $07: 45 \mathrm{AM}$ | 4 | 0 | 1 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 2 | 0 | 79 |
| Total | 8 | 0 | 1 | 0 | 0 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 88 | 2 | 0 | 244 |


08:00 AM	2	0	0	0	0	37	0	0	0	0	0	0	0	24	1	0	64
08:15 AM	2	0	0	0	0	32	0	0	0	0	0	0	0	29	0	0	63
Grand Total	15	0	2	0	0	244	0	0	0	0	0	0	0	180	5	0	446
Apprch \%	88.2	0.0	11.8	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.3	2.7	0.0	
Total \%	3.4	0.0	0.4	0.0	0.0	54.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.4	1.1	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
File Name : Best Western 1
Site Code : 00000000
Start Date : 09/19/2006
Page No : 2


	9/19/06 7:15:00 AM 9/19/06 8:00:00 AM   Group 1	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name: Best Western 2
Site Code : 00000000
Start Date : 09/19/2006
Page No : 1
E-mail: Isc@|sccs.com

	Best Western Driveway North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				South				Highway 50 West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	0	0	0	0	0	40	0	0	0	0	0	0	0	31	2	0	73
04:30 PM	3	0	0	0	1	44	0	0	0	0	0	0	0	36	4	0	88
04:45 PM	0	0	0	0	0	39	0	0	0	0	0	0	0	40	2	0	81
Total	3	0	0	0	1	123	0	0	0	0	0	0	0	107	8	0	242


| $05: 00 \mathrm{PM}$ | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 41 | 1 | 0 | 78 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $05: 15 \mathrm{PM}$ | 0 | 0 | 0 | 0 | 1 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 3 | 0 | 90 |
| $05: 30 \mathrm{PM}$ | 1 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44 | 1 | 0 | 79 |
| $05: 45 \mathrm{PM}$ | 1 | 0 | 0 | 0 | 1 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 2 |  |  |
| Total | 2 | 0 | 0 | 0 | 2 | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 181 | 7 | 0 | 327 |


| $06: 00 ~ P M ~$ | 3 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 | 7 | 0 | 89 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Grand Total | 8 | 0 | 0 | 0 | 3 | 284 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 341 | 22 | 0 | 658 |
| Apprch \% | 100.0 | 0.0 | 0.0 | 0.0 | 1.0 | 99.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 93.9 | 6.1 | 0.0 |  |
| Total \% | 1.2 | 0.0 | 0.0 | 0.0 | 0.5 | 43.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 51.8 | 3.3 | 0.0 |  |

File Name : Best Western 2
Site Code : 00000000
Start Date : 09/19/2006
Page No : 2


LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name : Industrial Site
Site Code : 00920061
Start Date : 09/20/2006
Page No : 1
Groups Printed- Unshifted

	Driveway North				$\text { Highway } 50$ East				Industrial Site South				Highway 50 West				
Start Time	Right	Thru	Left	Peds	Int. Total												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	0	0	0	0	10	0	0	0	0	0	0	7	17	0	0	34
06:45 AM	0	0	0	0	0	20	4	0	0	0	4	0	10	19	0	0	57
Total	0	0	0	0	0	30	4	0	0	0	4	0	17	36	0	0	91


07:00 AM	1	0	0	0	0	25	0	0	0	0	7	0	1	20	0	0	54
07:15 AM	0	0	0	0	0	36	1	0	0	0	5	0	4	18	0	0	64
07:30 AM	2	0	0	0	0	24	0	0	0	0	3	0	4	23	0	0	56
07:45 AM	0	0	0	0	0	39	2	0	0	0	4	0	4	25	0	0	74
Total	3	0	0	0	0	124	3	0	0	0	19	0	13	86	0	0	248


| 08:00 AM | 0 | 0 | 0 | 0 | 0 | 36 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 31 | 0 | 0 | 73 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 08:15 AM | 1 | 0 | 0 | 0 | 0 | 34 | 0 | 0 | 1 | 0 | 3 | 0 | 3 | 27 | 0 | 0 | 69 |
| Grand Total | 4 | 0 | 0 | 0 | 0 | 224 | 9 | 0 | 1 | 0 | 30 | 0 | 33 | 180 | 0 | 0 | 481 |
| Apprch \% | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96.1 | 3.9 | 0.0 | 3.2 | 0.0 | 96.8 | 0.0 | 15.5 | 84.5 | 0.0 | 0.0 |  |
| Total \% | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 46.6 | 1.9 | 0.0 | 0.2 | 0.0 | 6.2 | 0.0 | 6.9 | 37.4 | 0.0 | 0.0 |  |

File Name : Industrial Site
Site Code : 00920061
Start Date : 09/20/2006
Page No : 2



## LSC Transportation Consultants Inc. <br> Intersection Counts

516 N. Tejon St.
File Name: Industrial Site 2
Site Code : 00009192
Colorado Springs, CO 80903
Start Date : 09/19/2006
Page No : 1
Groups Printed- Unshifted
E-mail: Isc@lsccs.com

	Driveway North				$\begin{gathered} \text { Highway } 50 \\ \text { East } \end{gathered}$				Industrial Site South				$\begin{gathered} \text { Highway } 50 \\ \text { West } \end{gathered}$				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	0	0	0	0	0	37	0	0	0	0	2	0	3	24	1	0	67
04:30 PM	1	0	0	0	0	39	0	0	0	0	5	0	4	35	1	0	85
04:45 PM	0	0	0	0	2	26	0	0	1	0	3	0	0	36	0	0	68
Total	1	0	0	0	2	102	0	0	1	0	10	0	7	95	2	0	220


05:00 PM	0	0	0	0	0	32	0	0	0	0	2	0	5	30	1	0	70
05:15 PM	0	0	0	0	3	24	0	0	1	0	8	0	2	44	1	0	83
05:30 PM	0	0	0	0	0	24	0	0	0	0	2	0	1	41	0	0	68
05:45 PM	0	0	2	0	0	29	0	0	1	0	2	0	0	37	0	0	71
Total	0	0	2	0	3	109	0	0	2	0	14	0	8	152	2	0	292


| 06:00 PM | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 39 | 0 | 0 | 65 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Grand Total | 1 | 0 | 2 | 0 | 5 | 235 | 0 | 0 | 3 | 0 | 25 | 0 | 16 | 286 | 4 | 0 | 577 |  |
| Apprch \% | 33.3 | 0.0 | 66.7 | 0.0 | 2.1 | 97.9 | 0.0 | 0.0 | 10.7 | 0.0 | 89.3 | 0.0 | 5.2 | 93.5 | 1.3 | 0.0 |  | 0.0 |

File Name : Industrial Site 2
Site Code : 00009192
Start Date : 09/19/2006
Page No : 2

	Driveway North					Highway 50 East					Industrial Site South					Highway 50 West					
Start   Time	Rig ht	$\begin{array}{r} \hline T h r \\ u \end{array}$	Left	$\begin{array}{r} \hline \mathrm{Ped} \\ \mathrm{~s} \\ \hline \end{array}$	App.   Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} T h r \\ u \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	Thr u	Left	Ped	App.   Total	Int. Total

Peak Hour From 04:15 PM to 06:00 PM - Peak 1 of 1


	9/19/06 4:30:00 PM   9/19/06 5:15:00 PM   Unshifted	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
File Name : Virginia 1
Site Code : 00009131
Start Date : 09/13/2006
Phone (719) 633-2868
Page No : 1
E-mail: Isc@|sccs.com

	Main St North				$\begin{gathered} \text { Virginia St } \\ \text { East } \end{gathered}$				Main St South				Virginia St West				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	2	21	1	0	0	0	0	0	1	44	0	0	1	1	1	0	72
06:45 AM	3	31	3	0	1	0	0	0	2	50	0	0	2	1	5	0	98
Total	5	52	4	0	1	0	0	0	3	94	0	0	3	2	6	0	170


| $07: 00 \mathrm{AM}$ | 5 | 52 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 54 | 1 | 0 | 1 | 3 | 4 | 0 | 122 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $07: 15 \mathrm{AM}$ | 5 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70 | 2 | 0 | 2 | 2 | 3 | 0 | 130 |
| $07: 30 \mathrm{AM}$ | 7 | 58 | 3 | 0 | 0 | 3 | 0 | 0 | 2 | 80 | 1 | 0 | 7 | 1 | 5 | 0 | 167 |
| $07: 45 \mathrm{AM}$ | 6 | 65 | 8 | 0 | 1 | 9 | 1 | 0 | 1 | 93 | 3 | 0 | 5 | 11 | 5 | 0 | 208 |
| Total | 23 | 221 | 12 | 0 | 1 | 13 | 1 | 0 | 3 | 297 | 7 | 0 | 15 | 17 | 17 | 0 | 627 |


| $08: 00 \mathrm{AM}$ | 15 | 63 | 4 | 0 | 2 | 6 | 0 | 0 | 2 | 70 | 9 | 0 | 4 | 12 | 5 | 0 | 192 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $08: 15 \mathrm{AM}$ | 13 | 60 | 10 | 0 | 1 | 3 | 3 | 0 | 0 | 69 | 4 | 0 | 7 | 5 | 14 | 0 | 189 |
| Grand Total | 56 | 396 | 30 | 0 | 5 | 22 | 4 | 0 | 8 | 530 | 20 | 0 | 29 | 36 | 42 | 0 | 1178 |
| Apprch \% | 11.6 | 82.2 | 6.2 | 0.0 | 16.1 | 71.0 | 12.9 | 0.0 | 1.4 | 95.0 | 3.6 | 0.0 | 27.1 | 33.6 | 39.3 | 0.0 |  |
| Total \% | 4.8 | 33.6 | 2.5 | 0.0 | 0.4 | 1.9 | 0.3 | 0.0 | 0.7 | 45.0 | 1.7 | 0.0 | 2.5 | 3.1 | 3.6 | 0.0 |  |

LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
File Name : Virginia 1
Site Code : 00009131
Colorado Springs, CO 80903
Start Date : 09/13/2006
Page No : 2
E-mail: Isc@lsccs.com

	Main St North					$\begin{gathered} \text { Virginia } \mathrm{St} \\ \text { East } \end{gathered}$					Main St South					Virginia St West					
Start   Time	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{gathered} \mathrm{Thr} \\ \mathrm{u} \end{gathered}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \hline \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \text { Rig } \\ \text { ht } \end{gathered}$	Thr u	Left	Ped s	App. Total	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$

Peak Hour From 06:30 AM to 08:15 AM - Peak 1 of 1


	9/13/06 7:30:00 AM 9/13/06 8:15:00 AM   Unshifted	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
File Name : Virginia 2
Site Code : 00009132
Start Date : 09/13/2006
Phone (719) 633-2868
Page No : 1
E-mail: Isc@lsccs.com

	Main St North				$\begin{aligned} & \text { Virginia St } \\ & \text { East } \end{aligned}$				Main St South				Virginia St West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \\ \hline \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	13	86	6	0	8	9	2	0	2	78	4	0	7	10	19	0	244
04:30 PM	15	107	9	0	1	3	3	0	10	79	5	0	5	10	18	0	265
04:45 PM	13	99	12	0	10	14	3	0	2	103	9	0	9	11	13	0	298
Total	41	292	27	0	19	26	8	0	14	260	18	0	21	31	50	0	807


05:00 PM	12	141	13	0	11	6	1	0	1	103	5	0	7	5	16	0	321
05:15 PM	13	109	13	0	8	14	1	0	2	97	4	0	10	5	11	0	287
05:30 PM	11	125	6	0	4	4	2	0	5	96	2	0	10	7	8	0	280
05:45 PM	9	105	9	0	4	7	0	0	2	90	4	0	8	12	10	0	260
Total	45	480	41	0	27	31	4	0	10	386	15	0	35	29	45	0	1148


$06: 00 ~ P M ~$	14	101	6	0	9	11	2	0	1	73	1	0	8	8	9	0
Grand Total	100	873	74	0	55	68	14	0	25	719	34	0	64	68	104	0
Apprch \%	9.6	83.4	7.1	0.0	40.1	49.6	10.2	0.0	3.2	92.4	4.4	0.0	27.1	28.8	44.1	0.0
Total \%	4.5	39.7	3.4	0.0	2.5	3.1	0.6	0.0	1.1	32.7	1.5	0.0	2.9	3.1	4.7	0.0

LSC Transportation Consultants Inc. Intersection Counts

516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@Isccs.com

File Name: Virginia 2
Site Code : 00009132
Start Date : 09/13/2006
Page No : 2

	Main St North					Virginia St East					Main St South					Virginia St West					
Start Time	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{gathered} \text { Thr } \\ u \end{gathered}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \mathrm{Rig} \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Int. } \\ \text { Total } \end{array}$

Peak Hour From 04:15 PM to 06:00 PM - Peak 1 of 1


516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@lsccs.com

File Name : Georgia 1
Site Code : 00914061
Start Date : 09/14/2006
Page No : 1

	$\begin{aligned} & \text { Main St (SH 135) } \\ & \text { North } \end{aligned}$				Georgia Ave East				Main St (SH 135) South				Georgia Ave West				
Start Time	Right	Thru	Left	Peds	Int. Total												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	1	40	1	0	0	1	0	0	0	45	1	0	1	0	1	0	91
06:45 AM	5	46	1	0	0	0	0	0	1	61	1	0	0	0	0	0	115
Total	6	86	2	0	0	1	0	0	1	106	2	0	1	0	1	0	206


| $07: 00 \mathrm{AM}$ | 4 | 34 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | 69 | 2 | 0 | 0 | 1 | 1 | 0 | 115 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $07: 15 \mathrm{AM}$ | 3 | 51 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 73 | 1 | 0 | 0 | 0 | 2 | 0 |  |
| $07: 30 \mathrm{AM}$ | 6 | 58 | 3 | 0 | 2 | 2 | 0 | 0 | 1 | 72 | 1 | 0 | 2 | 1 | 2 | 0 | 132 |
| $07: 45 \mathrm{AM}$ | 9 | 92 | 7 | 0 | 4 | 0 | 0 | 0 | 1 | 92 | 4 | 0 | 3 | 1 | 1 | 0 | 214 |
| Total | 22 | 235 | 12 | 0 | 9 | 2 | 0 | 0 | 3 | 306 | 8 | 0 | 5 | 3 | 6 | 0 | 611 |


08:00 AM	4	79	8	0	4	2	0	0	2	75	2	0	2	1	1	0	180
08:15 AM	4	74	4	0	0	1	1	0	1	82	1	0	4	1	4	0	177
Grand Total	36	474	26	0	13	6	1	0	7	569	13	0	12	5	12	0	1174
Apprch \%	6.7	88.4	4.9	0.0	65.0	30.0	5.0	0.0	1.2	96.6	2.2	0.0	41.4	17.2	41.4	0.0	
Total \%	3.1	40.4	2.2	0.0	1.1	0.5	0.1	0.0	0.6	48.5	1.1	0.0	1.0	0.4	1.0	0.0	

LSC Transportation Consultants Inc. Intersection Counts

516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@Isccs.com

File Name : Georgia 1
Site Code : 00914061
Start Date : 09/14/2006
Page No : 2

	$\begin{aligned} & \text { Main St (SH 135) } \\ & \text { North } \end{aligned}$					Georgia Ave East					Main St (SH 135)   South					Georgia Ave West					
Start   Time	Rig ht	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Rig ht	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	$\begin{gathered} \mathrm{Rig} \\ \mathrm{ht} \end{gathered}$	$\begin{array}{r\|} \hline \text { Thr } \\ u \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{gathered} \text { Rig } \\ \text { ht } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	Left	Ped s	App.   Total	Int. Total



LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Georgia 2
Site Code : 00914062
Start Date : 09/14/2006
E-mail: Isc@Isccs.com
Page No : 1
Groups Printed-Unshifted

	$\begin{aligned} & \text { Main St (SH 135) } \\ & \text { North } \end{aligned}$				Georgia Ave East				Main St (SH 135)South				Georgia Ave West				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	5	99	4	0	6	2	1	0	3	87	1	0	13	2	4	0	227
04:30 PM	9	110	7	0	7	5	4	0	3	104	4	0	7	1	2	0	263
04:45 PM	5	124	3	0	5	1	2	0	4	94	5	0	9	1	5	0	258
Total	19	333	14	0	18	8	7	0	10	285	10	0	29	4	11	0	748
05:00 PM	6	131	8	0	9	1	3	0	5	122	8	0	10	0	5	0	308
05:15 PM	7	137	1	0	5	1	1	0	2	112	0	0	4	2	4	0	276
05:30 PM	6	117	5	0	4	1	1	0	3	118	3	0	3	1	6	0	268
05:45 PM	3	138	7	0	0	1	4	0	1	118	4	0	2	1	3	0	282
Total	22	523	21	0	18	4	9	0	11	470	15	0	19	4	18	0	1134
06:00 PM	3	126	2	0	0	1	4	0	2	89	3	0	4	0	3	0	237
Grand Total	44	982	37	0	36	13	20	0	23	844	28	0	52	8	32	0	2119
Apprch \%	4.1	92.4	3.5	0.0	52.2	18.8	29.0	0.0	2.6	94.3	3.1	0.0	56.5	8.7	34.8	0.0	
Total \%	2.1	46.3	1.7	0.0	1.7	0.6	0.9	0.0	1.1	39.8	1.3	0.0	2.5	0.4	1.5	0.0	

LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Georgia 2
Site Code : 00914062
Start Date : 09/14/2006

Page No : 2
E-mail: Isc@lsccs.com

	$\begin{gathered} \text { Main St (SH 135) } \\ \text { North } \end{gathered}$					Georgia Ave East					$\begin{aligned} & \text { Main St (SH 135) } \\ & \text { South } \end{aligned}$					Georgia Ave West					
Start   Time	$\begin{array}{r} \text { Rig } \\ \mathrm{ht} \end{array}$	$\begin{gathered} \mathrm{Thr} \\ \mathrm{u} \end{gathered}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \\ \hline \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \end{array}$	Left	Ped	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	Thr u	Left	Ped	App. Total	Int.   Total

Peak Hour From 04:15 PM to 06:00 PM - Peak 1 of 1


LSC Transportation Consultants Inc.
Intersection Counts
File Name: Spencer 32
Site Code : 00010031
Start Date : 10/03/2006
Page No : 1
Groups Printed- Unshifted

	Highway 135 North				$\begin{gathered} \text { Spencer St } \\ \text { East } \end{gathered}$				$\begin{aligned} & \text { Highway } 135 \\ & \text { South } \end{aligned}$				Spencer StWest				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	2	21	1	0	0	1	0	0	2	31	1	0	3	1	7	0	70
06:45 AM	4	47	1	0	1	2	1	0	4	38	3	0	8	1	5	0	115
Total	6	68	2	0	1	3	1	0	6	69	4	0	11	2	12	0	185


07:00 AM	7	50	1	0	0	0	2	0	3	47	1	0	9	2	12	0	134
07:15 AM	8	38	2	0	2	1	3	0	2	98	1	0	7	4	12	0	178
07:30 AM	18	66	2	0	5	2	1	0	2	52	8	0	3	3	11	0	173
07:45 AM	17	96	5	0	3	2	3	0	5	61	5	0	11	11	18	0	237
Total	50	250	10	0	10	5	9	0	12	258	15	0	30	20	53	0	722
08:00 AM	27	86	6	0	2	7	10	0	6	66	14	0	10	9	9	0	252
08:15 AM	41	72	7	0	6	14	7	0	5	51	13	0	5	9	8	0	238
Grand Total	124	476	25	0	19	29	27	0	29	444	46	0	56	40	82	0	1397
Apprch \%	19.8	76.2	4.0	0.0	25.3	38.7	36.0	0.0	5.6	85.5	8.9	0.0	31.5	22.5	46.1	0.0	
Total \%	8.9	34.1	1.8	0.0	1.4	2.1	1.9	0.0	2.1	31.8	3.3	0.0	4.0	2.9	5.9	0.0	

File Name : Spencer 32
Site Code : 00010031
Start Date : 10/03/2006
Page No : 2


LSC Transportation Consultants Inc.
Intersection Counts

516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@lsccs.com

File Name: SH135-spencer noon
Site Code : 00000000
Start Date : 09/30/2006
Page No : 1

	$\begin{aligned} & \text { SH } 135 \\ & \text { North } \end{aligned}$				Spencer East				$\begin{aligned} & \text { SH } 135 \\ & \text { South } \end{aligned}$				Spencer West				
Start Time	Right	Thru	Left	Peds	$\begin{array}{r} \text { Int. } \\ \text { Total } \\ \hline \end{array}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
12:00 PM	9	42	7	0	11	12	23	0	12	44	9	0	16	13	15	0	213
12:15 PM	10	58	11	0	3	13	13	0	20	66	11	0	17	8	7	0	237
12:30 PM	12	49	15	0	11	7	18	0	21	58	5	0	20	6	10	0	232
12:45 PM	8	70	6	0	8	8	14	0	12	73	13	0	12	15	11	0	250
Total	39	219	39	0	33	40	68	0	65	241	38	0	65	42	43	0	932


01:00 PM	8	62	6	0	6	6	15	0	16	48	10	0	10	14	12	0	213
01:15 PM	12	61	8	0	12	11	10	0	24	55	18	0	14	10	8	0	243
01:30 PM	11	64	13	0	13	7	15	0	20	75	13	0	16	4	7	0	258
01:45 PM	17	56	14	0	12	5	13	0	23	66	5	0	7	7	16	0	241
Total	48	243	41	0	43	29	53	0	83	244	46	0	47	35	43	0	955
Grand Total	87	462	80	0	76	69	121	0	148	485	84	0	112	77	86	0	1887
Apprch \%	13.8	73.4	12.7	0.0	28.6	25.9	45.5	0.0	20.6	67.6	11.7	0.0	40.7	28.0	31.3	0.0	
Total \%	4.6	24.5	4.2	0.0	4.0	3.7	6.4	0.0	7.8	25.7	4.5	0.0	5.9	4.1	4.6	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
File Name : SH135-spencer noon
Site Code : 00000000
Start Date : 09/30/2006
Page No : 2


## LSC Transportation Consultants Inc.

Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
E-mail: Isc@lsccs.com
File Name: Spencer 31
Site Code : 00010022
Start Date : 10/02/2006
Page No : 1

	$\begin{gathered} \text { Highway } 135 \\ \text { North } \end{gathered}$				$\begin{gathered} \text { Spencer St } \\ \text { East } \end{gathered}$				$\begin{aligned} & \text { Highway } 135 \\ & \text { South } \end{aligned}$				Spencer St West				
Start Time	Right	Thru	Left	Peds	$\begin{gathered} \text { Int. } \\ \text { Total } \end{gathered}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	6	62	3	0	13	7	15	0	16	67	8	0	5	18	8	0	228
04:30 PM	12	74	5	0	10	21	14	0	14	76	8	0	14	10	7	0	265
04:45 PM	17	82	12	0	13	11	14	0	16	53	3	0	5	11	13	0	250
Total	35	218	20	0	36	39	43	0	46	196	19	0	24	39	28	0	743


| $05: 00 ~ P M ~$ | 19 | 65 | 8 | 0 | 17 | 17 | 16 | 0 | 18 | 93 | 14 | 0 | 14 | 12 | 17 | 0 | 310 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $05: 15 \mathrm{PM}$ | 18 | 69 | 7 | 0 | 8 | 17 | 16 | 0 | 11 | 94 | 11 | 0 | 14 | 6 | 16 | 0 | 287 |
| $05: 30 \mathrm{PM}$ | 17 | 82 | 9 | 0 | 16 | 17 | 17 | 0 | 7 | 73 | 7 | 0 | 11 | 12 | 16 | 0 | 284 |
| $05: 45 \mathrm{PM}$ | 9 | 69 | 10 | 0 | 8 | 14 | 19 | 0 | 10 | 67 | 10 | 0 | 18 | 18 | 20 | 0 | 272 |
| Total | 63 | 285 | 34 | 0 | 49 | 65 | 68 | 0 | 46 | 327 | 42 | 0 | 57 | 48 | 69 | 0 | 1153 |


$06: 00 \mathrm{PM}$	11	96	15	0	8	17	13	0	7	78	10	0	5	12	6	0
Grand Total	109	599	69	0	93	121	124	0	99	601	71	0	86	99	103	0
Apprch \%	14.0	77.1	8.9	0.0	27.5	35.8	36.7	0.0	12.8	78.0	9.2	0.0	29.9	34.4	35.8	0.0
Total \%	5.0	27.6	3.2	0.0	4.3	5.6	5.7	0.0	4.6	27.6	3.3	0.0	4.0	4.6	4.7	0.0

File Name : Spencer 31
Site Code : 00010022
Start Date : 10/02/2006
Page No : 2


	$10 / 2 / 06$ 5:00:00 PM $10 / 2 / 06$ 5:45:00 PM   Unshifted	

LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name : Colorado 2
Site Code : 01004061
Phone (719) 633-2868
Start Date : 10/04/2006
Page No : 1
E-mail: Isc@Isccs.com

	Colorado St North				Georgia Ave East				$\begin{gathered} \text { Colorado St } \\ \text { South } \end{gathered}$				Georgia AveWest				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	4	4	0	1	0	0	0	0	4	0	0	0	0	0	0	13
06:45 AM	0	5	1	0	2	0	0	0	0	6	0	0	0	3	0	0	17
Total	0	9	5	0	3	0	0	0	0	10	0	0	0	3	-	0	30


| $07: 00 \mathrm{AM}$ | 0 | 4 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $07: 15 \mathrm{AM}$ | 0 | 9 | 4 | 0 | 1 | 1 | 1 | 0 | 1 | 10 | 0 | 0 | 0 | 0 | 1 | 0 | 28 |
| $07: 30 \mathrm{AM}$ | 0 | 8 | 4 | 0 | 2 | 2 | 0 | 0 | 3 | 16 | 0 | 0 | 1 | 1 | 1 | 0 | 38 |
| $07: 45 \mathrm{AM}$ | 2 | 12 | 24 | 0 | 1 | 2 | 1 | 0 | 5 | 18 | 1 | 0 | 0 | 5 | 0 | 0 | 71 |
| Total | 2 | 33 | 35 | 0 | 7 | 5 | 3 | 0 | 10 | 52 | 1 | 0 | 1 | 6 | 2 | 0 | 157 |


08:00 AM	0	9	21	0	3	0	2	0	2	21	3	0	0	4	0	0	65
08:15 AM	0	9	7	0	5	0	0	0	5	10	1	0	0	5	0	0	42
Grand Total	2	60	68	0	18	5	5	0	17	93	5	0	1	18	2	0	294
Apprch \%	1.5	46.2	52.3	0.0	64.3	17.9	17.9	0.0	14.8	80.9	4.3	0.0	4.8	85.7	9.5	0.0	
Total \%	0.7	20.4	23.1	0.0	6.1	1.7	1.7	0.0	5.8	31.6	1.7	0.0	0.3	6.1	0.7	0.0	

LSC Transportation Consultants Inc.
Intersection Counts
File Name : Colorado 2
Site Code : 01004061
Start Date : 10/04/2006
Page No : 2

	Colorado St North					Georgia Ave East					Colorado St South					Georgia Ave West					
Start   Time	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	Rig	$\begin{array}{r} \text { Thr } \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \mathrm{Rig} \\ \mathrm{ht} \end{array}$	$\begin{array}{r} \text { Thr } \\ u \\ \hline \end{array}$	Left	Ped	App. Total	$\begin{array}{r\|} \hline \text { Rig } \\ \text { ht } \\ \hline \end{array}$	Thr u	Left	Ped	App. Total	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$




LSC Transportation Consultants Inc. Intersection Counts
516 N. Tejon St.
File Name : Colorado 1
Site Code : 01003062
Colorado Springs, CO 80903
Start Date : 10/03/2006
Page No : 1
E-mail: Isc@lsccs.com

	Colorado St North				Georgia Ave East				Colorado St South				Georgia Ave West				
Start Time	Right	Thru	Left	Peds	Int. Total												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	3	19	4	0	5	6	2	0	0	10	0	0	0	4	3	0	56
04:30 PM	1	25	4	0	8	2	0	0	0	10	1	0	2	0	1	0	54
04:45 PM	1	20	5	0	10	7	1	0	1	19	1	0	0	2	1	0	68
Total	5	64	13	0	23	15	3	0	1	39	2	0	2	6	5	0	178


05:00 PM	2	23	9	0	9	10	3	0	1	21	2	0	0	5	0	0	85
05:15 PM	3	21	8	0	9	3	2	0	1	14	0	0	1	3	1	0	66
05:30 PM	1	22	6	0	15	5	1	0	1	21	0	0	2	3	1	0	78
05:45 PM	3	32	10	0	15	4	1	0	1	11	0	0	0	0	1	0	78
Total	9	98	33	0	48	22	7	0	4	67	2	0	3	11	3	0	307


| 06:00 PM | 0 | 30 | 8 | 0 | 7 | 5 | 1 | 0 | 2 | 14 | 2 | 0 | 1 | 3 | 1 | 0 | 74 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Grand Total | 14 | 192 | 54 | 0 | 78 | 42 | 11 | 0 | 7 | 120 | 6 | 0 | 6 | 20 | 9 | 0 | 559 |
| Apprch \% | 5.4 | 73.8 | 20.8 | 0.0 | 59.5 | 32.1 | 8.4 | 0.0 | 5.3 | 90.2 | 4.5 | 0.0 | 17.1 | 57.1 | 25.7 | 0.0 |  |
| Total \% | 2.5 | 34.3 | 9.7 | 0.0 | 14.0 | 7.5 | 2.0 | 0.0 | 1.3 | 21.5 | 1.1 | 0.0 | 1.1 | 3.6 | 1.6 | 0.0 |  |

LSC Transportation Consultants Inc.
Intersection Counts
File Name : Colorado 1
Site Code : 01003062
Start Date : 10/03/2006
Page No : 2



LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
Phone (719) 633-2868
File Name : Escalante 2
Site Code : 00000000
Start Date : 10/04/2006
Page No : 1
E-mail: Isc@lsccs.com

	Colorado St North				Escalante Dr. East				Colorado St South				West				
Start Time	Right	Thru	Left	Peds	$\begin{aligned} & \text { Int. } \\ & \text { Total } \end{aligned}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
06:30 AM	0	7	1	0	1	0	0	0	1	3	0	0	0	0	0	0	13
06:45 AM	0	8	0	0	1	0	1	0	1	3	0	0	0	0	0	0	14
Total	0	15	1	0	2	0	1	0	2	6	0	0	0	0	0	0	27


07:00 AM	0	7	3	0	4	0	1	0	2	3	0	0	0	0	0	0	20
07:15 AM	0	6	9	0	1	0	2	0	13	4	0	0	0	0	0	0	35
07:30 AM	0	6	13	0	2	0	2	0	17	9	0	0	0	0	0	0	49
07:45 AM	0	18	23	0	1	0	2	0	39	13	0	0	0	0	0	0	96
Total	0	37	48	0	8	0	7	0	71	29	0	0	0	0	0	0	200


| 08:00 AM | 0 | 17 | 16 | 0 | 2 | 0 | 4 | 0 | 20 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 67 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 08:15 AM | 0 | 7 | 16 | 0 | 2 | 0 | 4 | 0 | 26 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 61 |
| Grand Total | 0 | 76 | 81 | 0 | 14 | 0 | 16 | 0 | 119 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 355 |
| Apprch \% | 0.0 | 48.4 | 51.6 | 0.0 | 46.7 | 0.0 | 53.3 | 0.0 | 70.8 | 29.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| Total \% | 0.0 | 21.4 | 22.8 | 0.0 | 3.9 | 0.0 | 4.5 | 0.0 | 33.5 | 13.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |

LSC Transportation Consultants Inc.
Intersection Counts
File Name : Escalante 2
Site Code : 00000000
Start Date : 10/04/2006
Page No : 2



LSC Transportation Consultants Inc.
Intersection Counts
516 N. Tejon St.
Colorado Springs, CO 80903
File Name : Escalante 1
Site Code : 00010032
Phone (719) 633-2868
Start Date : 10/03/2006
Page No : 1
E-mail: Isc@lsccs.com
Groups Printed- Unshifted

	Colorado St North				$\begin{aligned} & \text { Escalante Dr } \\ & \text { East } \end{aligned}$				$\begin{gathered} \text { Colorado St } \\ \text { South } \end{gathered}$				West				
Start Time	Right	Thru	Left	Peds	$\begin{gathered} \text { Int. } \\ \text { Total } \end{gathered}$												
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:15 PM	0	12	4	0	11	0	26	0	14	9	0	0	0	0	0	0	76
04:30 PM	0	15	3	0	12	0	16	0	11	10	0	0	0	0	0	0	67
04:45 PM	0	12	11	0	13	0	23	0	11	20	0	0	0	0	0	0	90
Total	0	39	18	0	36	0	65	0	36	39	0	0	0	0	0	0	233


114																	
$05: 00 \mathrm{PM}$	0	21	8	0	20	0	26	0	25	14	0	0	0	0	0	0	114
$05: 15 \mathrm{PM}$	0	17	5	0	13	0	20	0	13	14	0	0	0	0	0	0	82
$05: 30 \mathrm{PM}$	0	11	12	0	10	0	28	0	10	22	0	0	0	0	0	0	93
$05: 45 \mathrm{PM}$	0	19	14	0	14	1	18	0	22	12	0	0	0	0	0	0	100
Total	0	68	39	0	57	1	92	0	70	62	0	0	0	0	0	0	389


$06: 00 ~ P M ~$	0	16	5	0	13	0	18	0	12	16	0	0	0	0	0
Grand Total	0	123	62	0	106	1	175	0	118	117	0	0	0	0	0
0	0	702													
Apprch \%	0.0	66.5	33.5	0.0	37.6	0.4	62.1	0.0	50.2	49.8	0.0	0.0	0.0	0.0	0.0
Total \%	0.0	17.5	8.8	0.0	15.1	0.1	24.9	0.0	16.8	16.7	0.0	0.0	0.0	0.0	0.0
0.0															

LSC Transportation Consultants Inc.
Intersection Counts
File Name : Escalante 1
Site Code : 00010032
Start Date : 10/03/2006
Page No : 2

	Colorado St North					Escalante Dr East					Colorado St South					West					
Start   Time	$\begin{aligned} & \text { Rig } \\ & \text { ht } \end{aligned}$	Thr	Left	$\begin{array}{\|r\|} \hline \text { Ped } \\ \mathrm{s} \\ \hline \end{array}$	App.   Total	$\begin{aligned} & \text { Rig } \\ & \text { ht } \end{aligned}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	$\begin{array}{r} \hline \text { Ped } \\ \mathrm{s} \end{array}$	App.   Total	$\begin{array}{r} \text { Rig } \\ \text { ht } \end{array}$	Thr u	Left	$\begin{array}{r} \text { Ped } \\ \mathrm{s} \end{array}$	App. Total	$\begin{array}{r} \text { Rig } \\ \text { ht } \end{array}$	$\begin{array}{r} \mathrm{Thr} \\ \mathrm{u} \end{array}$	Left	Ped	App. Total	Int.   Total

Peak Hour From 04:15 PM to 06:00 PM - Peak 1 of 1



## Appendix B: Level of Service Reports

	4				4		*	$\dagger$	P		$\downarrow$	$\cdots$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$	${ }^{7}$		4	F	\%	个t		*	44	\%
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util Factor		1.00	1.00		1.00	1.00	1.00	0.95		100	0.95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Fit Protected		0.96	100		0.97	100	0.95	1.00		0.95	100	1.00
Satd. Flow (prot)		1786	1583		1806	1583	1770	3436		1770	3438	1583
Flt Permitted		0.74	1.00		0.82	100	0.57	1.00		0.43	1.00	1.00
Satd. Flow (perm)		1383	1583		1519	1583	1054	3436		793	3438	1583
Volume (vph)	62	8	6	8	4	11	16	565	2	11	290	20
Peak-hour factor, PHF	0.85	0.65	0.65	0.65	0.60	0.70	0.75	0.95	0.60	0.70	0.95	0.75
Adj Flow (vph)	73	12	9	12	7	16	21	595	3	16	305	27
RTOR Reduction (vph)	0	0	7	0	0	13	0	0	0	0	0	10
Lane Group Flow (vph)	0	85	2	0	19	3	21	598	0	16	305	17
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	5\%	2\%	2\%	5\%	2\%
Turn Type	Perm		Perm	Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)		8.1	8.1		8.1	8.1	29.1	29.1		29.1	29.1	29.1
Effective Green, g (s)		9.1	9.1		91	9.1	31.1	31.1		31.1	31.1	31.1
Actuated g/C Ratio		0.19	0.19		0.19	0.19	0.65	0.65		0.65	0.65	0.65
Clearance Time (s)		5.0	5.0		5.0	5.0	6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		261	299		287	299	680	2217		512	2218	1021
$\mathrm{v} / \mathrm{s}$ Ratio Prot								c0.17			0.09	
v/s Ratio Perm		co. 06	0.00		0.01	0.00	0.02			0.02		0.01
v/c Ratio		0.33	0.01		0.07	0.01	0.03	0.27		0.03	0.14	0.02
Uniform Delay, d1		16.9	15.9		16.1	15.9	31	3.7		3.1	3.3	3.1
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.7	00		0.1	0.0	0.1	0.3		0.1	01	0.0
Delay (s)		17.6	15.9		16.2	15.9	3.2	4.0		3.2	3.5	3.1
Level of Service		B	B		B	B	A	A		A	A	A
Approach Delay (s)		17.5			16.0			3.9			3.4	
Approach LOS		B			B			A			A	
Intersection Summary												
HCM Average Control Delay			5.3		HCM Le	el of S	rvice		A			
HCM Volume to Capacity ratio			0.28									
Actuated Cycle Length (s)			48.2		Sum of	st tim			8.0			
Intersection Capacity Utilization			32.9\%		ICU Lev	of Se	vice		A			
Analysis Period (min)			15									
C Critical Lane Group												


Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{*}$	"		4	7	${ }^{*}$	中		${ }^{1}$	44	\%
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	4.0
Lane Util Factor		1.00	1.00		1.00	1.00	1.00	0.95		1.00	0.95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	0.85
Fit Protected		0.96	1.00		0.97	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1793	1583		1810	1583	1770	3436		1770	3438	1583
Fit Permitted		0.73	1.00		0.78	1.00	0.39	1.00		0.46	1.00	100
Satd. Flow (perm)		1357	1583		1461	1583	722	3436		853	3438	1583
Volume (vph)	58	14	12	35	23	14	14	495	2	15	650	53
Peak-hour factor, PHF	0.85	0.70	0.70	0.85	0.80	0.70	0.70	0.95	0.60	0.75	0.95	0.85
Adj. Flow (vph)	68	20	17	41	29	20	20	521	3	20	684	62
RTOR Reduction (vph)	0	0	14	0	0	16	0	0	0	0	0	22
Lane Group Flow (vph)	0	88	3	0	70	4	20	524	0	20	684	40
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	5\%	2\%	2\%	5\%	2\%
Turn Type	Perm		Perm	Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2			.		6
Actuated Green, G (s)		8.3	8.3		8.3	8.3	29.1	29.1		29.1	29.1	29.1
Effective Green, g ( s )		9.3	9.3		9.3	9.3	31.1	31.1		31.1	31.1	31.1
Actuated g/C Ratio		0.19	0.19		0.19	0.19	0.64	0.64		0.64	0.64	0.64
Clearance Time (s)		5.0	5.0		5.0	5.0	6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		261	304		281	304	464	2208		548	2209	1017
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.15			c0. 20	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		c0. 06	0.00		0.05	0.00	0.03			0.02		0.03
v/c Ratio		0.34	0.01		0.25	0.01	0.04	0.24		0.04	0.31	0.04
Uniform Delay, d1		16.9	15.8		16.6	15.8	3.2	3.6		3.2	3.9	3.2
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.8	0.0		0.5	0.0	0.2	0.3		0.1	0.4	0.1
Delay (s)		17.7	15.8		17.1	15.8	3.4	3.9		3.3	4.2	3.2
Level of Service		B	B		B	B	A	A		A	A	A
Approach Delay (s)		17.4			16.8			3.9			4.1	
Approach LOS		B			B			A			A	
htersection Summary												
HCM Average Control Delay			5.7		HCM Le	el of S	rvice		A			
HCM Volume to Capacity ratio			0.32									
Actuated Cycle Length (s)			48.4		Sum of	st time			8.0			
Intersection Capacity Utilization			35.2\%		ICU Lev	of Se	vice		A			
Analysis Period (min)			15									
C Critical Lane Group												

LSC, Inc.


C Critical Lane Group

c Critical Lane Group



Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		SBE
Lane Configurations	${ }^{4}$	$\uparrow$		7	49			4	7		4	*
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	4.0
Lane Util Factor	1.00	0.95		1.00	0.95			1.00	100		1.00	1.00
Frt	1.00	0.99		1.00	1.00			1.00	0.85		1.00	0.85
Flt Protected	0.95	100		0.95	100			0.97	1.00		0.97	100
Satd. Flow (prot)	1770	3300		1770	3303			1809	1583		1810	1583
Flt Permitted	0.47	1.00		0.39	1.00			0.81	1.00		0.81	1.00
Satd. Flow (perm)	869	3300		727	3303			1506	1583		1510	1583
Volume (vph)	14	600	20	15	465	11	17	11	8	14	10	18
Peak-hour factor, PHF	0.70	0.95	0.75	0.75	0.95	0.70	0.75	0.70	0.65	0.70	0.70	0.75
Adj. Flow (vph)	20	632	27	20	489	16	23	16	12	20	14	24
RTOR Reduction (vph)	0	2	0	0	2	0	0	0	10	,	0	21
Lane Group Flow (vph)	20	657	0	20	503	0	0	39	2	0	34	3
Heavy Vehicles (\%).	2\%	9\%	2\%	2\%	9\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Tun Type	pm+pt			pm+pt			Perm		Perm	Perm		Perm
Protected Phases	7	4		,	8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)	35.3	34.3		35.3	34.3			6.9	6.9		6.9	6.9
Effective Green, g (s)	37.3	36.3		37.3	36.3			7.9	7.9		7.9	79
Actuated g/C Ratio	0.65	0.63		0.65	0.63			0.14	0.14		0.14	0.14
Clearance Time (s)	4.0	6.0		4.0	6.0			5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	582	2094		492	2096			208	219		209	219
v/s Ratio Prot	0.00	c0.20		c0.00	0.15							
$\mathrm{v} / \mathrm{s}$ Ratio Perm	0.02			0.03				c0.03	0.00		0.02	0.00
V/c Ratio	0.03	0.31		0.04	0.24			0.19	0.01		0.16	0.02
Uniform Delay, d1	3.5	4.8		3.5	4.5			21.8	21.3		217	21.3
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.4		0.0	0.3			0.4	0.0		0.4	0.0
Delay (s)	3.5	5.2		3.5	4.8			22.2	21.3		22.1	21.3
Level of Service	A	A		A	A			C	C		C	C
Approach Delay (s)		5.1			4.7			22.0			21.8	
Approach LOS		A			A			C			C	
Intersection Summary												
HCM Average Control Delay			6.4		HCM Lev	el of S	rvice		A			
HCM Volume to Capacity ratioActuated Cycle Length (s)			0.29									
			57.2		Sum of	st time			12.0			
			33.9\%		ICU Level of Service				A		$\square+$	
Intersection Capacity UtilizationAnalysis Period (min)			15									

c Critical Lane Group


Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4	"	${ }^{*}$	4	7		$\uparrow$	7		$\uparrow$	
Ideal Flow (vphpl).	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	0.95	100	1.00	0.95	1.00		1.00	100		1.00	10
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Filt Protected	0.95	100	1.00	0.95	1.00	1.00		0.97	1.00		0.97	1.00
Satd. Flow (prot)	1770	3312	1583	1770	3312	1583		1808	1583		1808	1583
Fit Permitted	0.41	100	1.00	0.35	1.00	1.00		0.79	1.00		0.79	1.0
Satd. Flow (perm)	770	3312	1583	651	3312	1583		1472	1583		1472	1583
Volume (vph)	20	700	30	20	575	40	25	15	15	25	15	25
Peak-hour factor, PHF	0.80	0.95	0.85	0.80	0.95	0.85	0.80	0.75	0.75	0.80	0.75	0.80
Adj. Flow (vph)	25	737	35	25	605	47	31	20	20	31	20	3
RTOR Reduction (vph)	0	0	13	0	0	18	0	0	17	0	1	2
Lane Group Flow (vph)	25	737	22	25	605	29	0	51	3	0	51	
Heavy Vehicles (\%)	2\%	9\%	2\%	2\%	9\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	$\mathrm{pm}+\mathrm{pt}$		Perm	pm+pt		Perm	Perm		Perm	Perm		Perr
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2		2	6		
Actuated Green, G (s)	36.5	34.4	34.4	36.5	34.4	34.4		7.4	7.4		7.4	7.
Effective Green, g (s)	38.5	36.4	36.4	38.5	36.4	36.4		8.4	8.4		8.4	8.
Actuated g/C Ratio	0.65	0.62	0.62	0.65	0.62	0.62		0.14	0.14		0.14	0.1
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0		5.0	5.0		5.0	5.
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	539	2047	978	465	2047	978		210	226		210	22
$\mathrm{v} / \mathrm{s}$ Ratio Prot	0.00	c0.22		c0.00	0.18							
v/s Ratio Perm	0.03		0.01	0.03		0.02		c0.03	0.00		0.03	0.0
v/c Ratio	0.05	0.36	0.02	0.05	0.30	0.03		0.24	0.01		0.24	0.0
Uniform Delay, d1	3.6	5.5	4.4	3.6	5.3	4.4		22.4	217		22.4	21.
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.0
Incremental Delay, d2	0.0	0.5	0.0	0.0	0.4	0.1		06	0.0		0.6	0.0
Delay (s)	3.6	6.0	4.4	3.7	5.6	4.4		23.0	21.7		23.0	21.
Level of Service	A	A	A	A	A	A		c	C		C	
Approach Delay (s)		5.9			5.5			22.7			22.5	
Approach LOS		A			A			C			C	

Intersection Summary
HCM Average Control Delay
HCM Volume to Capacity ratio
Actuated Cycle Length (s)
Intersection Capacity Utilization

7.3
0.33
58.9
$36.0 \%$
15

C Critical Lane Group

	7			7				$\dagger$	$p$		$\downarrow$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	舟	$\overline{7}$	${ }^{*}$	¢4	7		$\uparrow$	7		4	*
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0
Lane Utill Factor	100	0.95	100	1.00	0.95	1.00		100	100		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Fit Protected	0.95	100	1.00	0.95	100	100		0.96	100		0.97	1.00
Satd. Flow (prot)	1770	3312	1583	1770	3312	1583		1791	1583		1802	1583
Flt Permitted	0.21	1.00	1.00	0.32	100	1.00		0.70	1.00		0.74	1.00
Satd. Flow (perm)	394	3312	1583	602	3312	1583		1299	1583		1373	1583
Volume (vph)	40	800	25	15	975	50	70	15	25	60	30	70
Peak-hour factor, PHF	0.85	0.95	0.80	0.75	0.95	0.85	0.85	0.75	0.80	0.85	0.85	0.85
Adj. Flow (vph)	47.	842	31	20	1026	59	82	20	31	71	35	82
RTOR Reduction (vph)	0	0	11	0	0	24	0	0	26	0	0	68
Lane Group Flow (vph)	47.	842	20	20	1026	35	0	102	5	0	106	14
Heavy Vehicles (\%)	2\%	9\%	2\%	2\%	9\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	pm+pt		Perm	pm+pt		Perm	Perm		Perm	Perm		Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	42.3	38.7	38.7	37.3	36.2	36.2		9.9	9.9		9.9	9.9
Effective Green, g (s)	44.3	40.7	40.7	39.3	38.2	38.2		10.9	10.9		10.9	10.9
Actuated g/C Ratio	0.68	0.63	0.63	0.61	0.59	0.59		0.17	0.17		0.17	0.17
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0		5.0	5.0		50	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	346	2083	996	386	1955	935		219	267		231	267
$\mathrm{v} / \mathrm{s}$ Ratio Prot	c0.01	0.25		0.00	c0.31							
$\mathrm{v} / \mathrm{s}$ Ratio Perm	0.09		0.01	0.03		0.02		c0.08	0.00		0.08	0.01
$v / \mathrm{R}$ Ratio	0.14	0.40	0.02	0.05	0.52	0.04		0.47	0.02		0.46	0.05
Uniform Delay d1	4.1	6.0	4.5	5.1	79	5.5		24.3	22.4		24.2	22.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	0.2	0.6	0.0	0.1	1.0	0.1		1.6	0.0		14	0.1
Delay (s)	4.3	6.6	4.5	5.1	8.9	5.6		25.8	22.5		25.7	22.6
Level of Service	A	A	A	A	A	A		C	C		C	C
Approach Delay (s)		6.4			8.6			25.1			24.4	
Approach LOS		A			A			C			C	
Intersection Summary												
HCM Average Control Delay			9.9		HCM Lev	el of S	rvice		A			
HCM Volume to Capacity ratio			0.53									
Actuated Cycle Length (s)			64.7		Sum of lo	ost time			16.0			
Intersection Capacity Utilization			51.5\%		ICU Leve	of Ser	vice		A			
Analysis Period (min)			15									
C Critical Lane Group												


	4			7			4	4	P		*	4
Movenent	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	坐4	7	*	¢4	1		$\uparrow$	$\overrightarrow{7}$		$\pm$	F
Ideal Flow (vphpl),	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0
Lane Utill Factor	1.00	0.95	100	1.00	0.95	1.00		1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	100	1.00		0.97	1.00		0.96	1.00
Satd. Flow (prot)	1770	3343	1583	1770	3343	1583		1809	1583		1786	1583
Fit Permitted	0.30	100	1.00	0.23	1.00	100		0.80	1.00		0.72	1.00
Satd. Flow (perm)	561	3343	1583	435	3343	1583		1493	1583		1344	1583
Volume (vph)	20	990	30	30	800	105	25	15	30	115	15	25
Peak-hour factor, PHF	0.80	0.95	0.85	0.85	0.95	0.95	0.85	0.75	0.85	0.95	0.75	0.80
Adj. Flow (vph)	25	1042	35	35	842	111	29	20	35	121	20	31
RTOR Reduction (vph)	0	0	11	0	0	34	0	0	29	0	0	26
Lane Group Flow (vph)	25	1042	24	35	842	77	0	49	6	0	141	5
Heavy Vehicles (\%)	2\%	8\%	2\%	2\%	8\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	pm+pt		Perm	pm+pt		Perm	Perm		Perm	Perm		Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	70.0	66.4	66.4	70.0	66.4	66.4		15.0	15.0		15.0	15.0
Effective Green, g (s)	74.0	69.4	69.4	74.0	69.4	69.4		17.0	17.0		17.0	17.0
Actuated g/C Ratio	0.74	0.69	0.69	0.74	0.69	0.69		0.17	0.17		0.17	0.17
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0		5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	471	2320	1099	383	2320	1099		254	269		228	269
$\mathrm{v} / \mathrm{s}$ Ratio Prot	0.00	c0.31		c0.00	0.25							
v/s Ratio Perm	0.04		0.02	0.06		0.05		0.03	0.00		co. 10	0.00
V/c Ratio	0.05	0.45	0.02	0.09	0.36	0.07		0.19	0.02		0.62	0.02
Uniform Delay d1	3.7	6.8	4.8	4.0	6.3	4.9		35.6	34.6		38.5	34.6
Progression Factor	0.85	0.95	0.55	0.18	0.17	0.04		1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.6	0.0	0.1	0.4	0.1		0.4	0.0		4.9	0.0
Delay (s)	3.2	7.1	2.7	0.8	1.5	0.3		36.0	34.6		43.4	34.6
Level of Service	A	A	A	A	A	A		D	C		D	C
Approach Delay (s)		6.8			1.3			35.4			41.8	
Approach LOS		A			A			D			D	
lntersection Summary												
HCM Average Control Delay			8.1		HCM Lev	el of Se	rvice		A			
HCM Volume to Capacity ratio			0.46									
Actuated Cycle Length (s)			100.0		Sum of lo	st time			9.0			
Intersection Capacity Utilization			47.9\%		CU Leve	of Ser	vice		A			
			15									
c Critical Lane Group												



Permitted Phases	4		4	8		8	2	2	6	6
Actuated Green, G (s)	64.7	61.4	61.4	62.3	60.2	60.2	21.5	21.5	21.5	21.5
Effective Green, g(s)	68.7	64.4	64.4	66.3	63.2	63.2	23.5	23.5	23.5	23.5
Actuated g/C Ratio	0.69	0.64	0.64	0.66	0.63	0.63	0.24	0.24	0.24	0.24
Clearance Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	217	2153	1019	270	2113	1000	221	372	285	372
v/s Ratio Prot	c0.01	0.35		0.01	c0.43					
$\mathrm{v} / \mathrm{s}$ Ratio Perm	0.14		0.01	0.11		0,06	0.10	0.01	c0.19	0.01
v/c Ratio	0.22	0.55	0.02	0.17	0.67	0.10	0.44	0.03	0.81	0.05
Uniform Delay, d1	8.5	9.8	6.4	7.0	11.8	7.2	32.7	29.5	36.1	29.6
Progression Factor	0.83	1.02	0.85	0.17	0.14	0.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.5	1.0	0.0	01	0.7	0.1	1.4	0.0	15.3	0.1
Delay (s)	7.5	11.0	5.5	1.3	2.4	0.1	34.1	29.5	51.4	29.7
Level of Service	A	B	A	A	A	A	C	C	D	
Approach Delay (s)		10.7			2.1		32.5		45.9	
Approach LOS		B			A		C		D	

htersection Summary

HCM Average Control Delay	10.8	HCM Level of Service	B
HCM Volume to Capacity ratio	0.71		
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	12.0
Intersection Capacity Utilization	62.5\%	ICU Level of Service	B
Analysis Period (min)	15		

c Critical Lane Group

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis 10：US 50 \＆SH 135

Seasonally Adjusted Existing Traffic PM Peak Hour

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性		${ }^{*}$	个t			$\uparrow$	「	${ }^{K}$	个 P	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Util．Factor	1.00	0.95		1.00	0，95			1.00	1.00	1.00	0.95	
Frt	1.00	0.99		1.00	0.97			1.00	0.85	1.00	0.87	
Flt Protected	0.95	1.00		0.95	1.00			0.98	1.00	0.95	100	
Satd．Flow（prot）	1703	3294		1770	3221			1833	1583	1703	2970	
Fit Permitted	0.26	100		0.49	100			0.75	1.00	0.57	1.00	
Satd．Flow（perm）	465	3294		916	3221			1390	1583	1014	2970	
Volume（vph）	320	400	23	17.	525	150	21	45	19	190	50	410
Peak－hour factor，PHF	0.95	0.95	0.80	0.75	0.95	0.95	0.80	0.85	0.75	0.95	0.85	0.95
Adj．Flow（vph）	337	421	29	23	553	158	26	53	25	200	59	432
RTOR Reduction（vph）	0	4	0	0	26	0	0	0	21	0	291	
Lane Group Flow（vph）	337	446	0	23	685	0	0	79	4	200	200	
Heavy Vehicles（\％）	6\％	9\％	2\％	2\％	9\％	6\％	2\％	2\％	2\％	6\％	2\％	6\％
Turn Type	pm＋pt			pm＋pt			pm＋pt		Perm	m＋pt		
Protected Phases	7	4		，	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Actuated Green，G（s）	40.5	34.0		31.0	28.5			9.0	9.0	21.0	21.0	
Effective Green， $\mathrm{g}(\mathrm{s})$	43.5	37.0		35.0	31.5			12.1	12.1	24.1	24.1	
Actuated g／C Ratio	0.59	0.50		0.48	0.43			0.16	0.16	0.33	0.33	
Clearance Time（s）	5.1	6.0		4.0	6.0			6.1	6.1	5.1	6.1	
Vehicle Extension（s）	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap（vph）	426	1656		476	1379			229	260	416	973	
$\mathrm{v} / \mathrm{s}$ Ratio Prot	c0．10	0.14		0.00	0.21					c0．06	0.07	
v／s Ratio Perm	c0．37			0.02				0.06	0.00	c0． 10		
v／c Ratio	0.79	0.27		0.05	0.50			0.34	0.02	0.48	0.21	
Uniform Delay，d1	9.3	10.5		10.3	15.3			27.2	25.8	18.9	17.8	
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay，d2	9.7	0.4		0.0	1.3			0.9	0.0	0.9	0.1	
Delay（s）	19.0	10.9		10.3	16.6			28.1	25.8	19.8	18.0	
Level of Service	B	B		B	B			C	C	B	B	
Approach Delay（s）		14.4			16.4			27.6			18.5	
Approach LOS		B			B			C			B	

lntersection Summary

HCM Average Control Delay	16.8	HCM Level of Service	B
HCM Volume to Capacity ratio	0.67		
Actuated Cycle Length（s）	73.6	Sum of lost time（s）	6.0
Intersection Capacity Utilization	67．9\％	ICU Level of Service	C
Analysis Period（min）	15		

c Critical Lane Group

c Critical Lane Group


c Critical Lane Group

	-			7			4	4	7		$\downarrow$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$4{ }^{4}$		\%	¢4	\%	*	F		${ }^{7 / 1 \%}$	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Utill Factor	1.00	0.95		1.00	0.95	1.00	1.00	1.00		0.97	1.00	
Frt	1.00	1.00		1.00	1.00	0.85	1.00	0.92		1.00	0.87	
Fit Protected	0.95	1.00		0.95	100	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1736	3425		1770	3438	1553	1770	1723		3367	1586	
Fit Permitted	0.12	1.00		0.12	1.00	100	0.38	100		0.95	1.00	
Satd. Flow (perm)	216	3425		220	3438	1553	703	1723		3367	1586	
Volume (vph)	400	1050	30	60	1225	410	30	60	60	440	55	500
Peak-hour factor, PHF	0.95	0.95	0.85	0.85	0.96	0.95	0.85	0.90	0.90	0.95	0.85	0.95
Adj. Flow (vph)	421	1105	35	71	1276	432	35	67	67.	463	65	526
RTOR Reduction (vph)	0	2	0	0	0	262	0	36	0	0	283	0
Lane Group Flow (vph)	421	1138	0	71	1276	170	35	98	0	463	308	0
Heavy Vehicles (\%)	4\%	5\%	2\%	2\%	5\%	4\%	2\%	2\%	2\%	4\%	2\%	4\%
Turn Type	pm+pt			pm+pt		Perm	pm+pt			Prot		
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4.			8		8	2					
Actuated Green, G (s)	53.5	52.6		34.2	34.2	34.2	9.3	7.5		16.3	23.1	
Effective Green, g (s)	55.6	55.6		37.2	37.2	37.2	13.4	10.6		18.4	26.2	
Actuated g/C Ratio	0.56	0.56		0.37	0.37	0.37	0.13	0.11		0.18	0.26	
Clearance Time (s)	5.1	6.0		4.0	6.0	6.0	4.0	6.1		5.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	451.	1904		135	1279	578	124	183		620	416	
$\mathrm{v} / \mathrm{s}$ Ratio Prot	c0.20	0.33		0.02	c0.37		0.01	0.06		c0. 14	c0.19	
v/s Ratio Perm	0.31			0.18		0.11	0.03					
v/c Ratio	0.93	0.60		0.53	1.00	0.29	0.28	0.54		0.75	0.74	
Uniform Delay, d1	34.3	14.8		23.3	31.4	22.1	38.8	42.4		38.6	33.8	
Progression Factor	0.81	0.64		0.44	0.59	1.30	1.00	1.00		0.83	0.43	
Incremental Delay d2	26.1	12		2.4	19.8	0.8	13	3.0		4.4	6.3	
Delay (s)	54.0	10.7		12.6	38.2	29.6	40.1	45.4		36.5	20.9	
Level of Service	D.	B		B	D	C	D	D		D	C	
Approach Delay (s)		22.3			35.1			44.3			27.7	
Approach LOS		C			D			D			C	
Intersection Summary												
HCM Average Control Delay			29.4		HCM Lev	vel of	ervice		C			
HCM Volume to Capacity ratio			0.86									
Actuated Cycle Length (s)			100.0		Sum of 1	ost time			6.0			
Intersection Capacity Utilization			99.8\%		ICU Leve	of Se	vice		F			
			15									

c Critical Lane Group








C Critical Lane Group

			\%		$\checkmark$			$\dagger$	P			$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	性		7	$\uparrow+$			¢			$\uparrow$	「
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	150	150	6	1	250	20	2	0	1	20	0	55
Peak Hour Factor	0.95	0.95	0.65	0.60	0.95	0.75	0.60	0.60	0.60	0.75	0.60	0.85
Hourly flow rate (vph)	158	158	9	2	263	27	3	0	2	27	0	65
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
VC , conficting volume	290			167			678	771	84	676	763	145
vC1, stage 1 conf vol												
VC2, stage 2 conf vol												
vCu, unblocked vol	290			167			678	771	84	676	763	145
tc, single (s)	4.1			41			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	88			100			99	100	100	91	100	93
cM capacity (veh/h)	1269			1408			283	288	959	306	291	876
Direction Lane\#	EB 1	EB 2	EB 3	WB1	WB 2	WB 3	NB 1	SB 1	SB2			
Volume Total	158	105	62	2	175	114	5	27	65			
Volume Left	158	0	0	2	0	0	3	27	0			
Volume Right	0	0	9	0	0	27	2	0	65			
cSH	1269	1700	1700	1408	1700	1700	370	306	876			
Volume to Capacity	0.12	0.06	0.04	0.00	0.10	0.07	0.01	0.09	0.07			
Queue Length 95th (ft)	11	0	0	0	0	0	1	7	6			
Control Delay (s)	8.2	0.0	0.0	76	0.0	00	14.9	17.9	9.4			
Lane LOS	A			A			B	C	A			
Approach Delay (s)	4.0			0.0			14.9	11.9				
Approach LOS							B	B				
Intersection Summary												
Average Delay			3.5									
Intersection Capacity Utilization			29.2\%	1	CU Lev	of Se			A			$\pm$
Analysis Period (min)			15									

LSC, Inc.

$4$					$4$		4		*	$\dagger$	*
Movement EBL	EBT	EBR	WBL	WBI	MBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4P		${ }^{7}$	中 ${ }^{\circ}$			*			4	T
Sign Control.	Free			Free			Stop			Stop	
Grade	0\%			0\%			0\%			0\%	
Volume (veh/h) $\square_{\square} 65$	305	32	2	340	15	25	3	2	15	3	80
Peak Hour Factor 0.85	0.95	0.85	0.60	0.95	0.75	0.80	0.60	0.60	0.75	0.60	0.85
Hounly flow rate (vph) $\square 76$	321	38	- 3	358	20	31	5	3	20	5	94
Pedestrians											
Lane Width (f)											
Walking Speed ( $\mathrm{ft} / \mathrm{s}$ )											
Percent Blockage.											
Right turn flare (veh)											
Median type, ,						$\pm$	None			None	$1+$
Median storage veh)											
Upstream signal (ft)											
pX , platoon unblocked											
$V C$, conflicting volume $\quad 378$			359			775	877	179	694	886	189
vC1, stage 1 conf vol											
VC2, stage 2 conf vol											
vCu, unblocked vol 378			359			775	877	179	694	886	189
			4.1	$\square$	-	7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)											
$\mathrm{tF}(\mathrm{s}) \times \square+\square$			22			3.5	4.0	3.3	3.5	4.0	
p0 queue free \% 94			100			87	98	100	93	98	89
cM capacity (veh/h) $\square^{\square} 1177$			1197			238	266	833	307	263	821
Direction, Lane \#, Eba	EB2	EB3	WB 1	WB 2	WB 3	NB1	SB 1	SB2			
Volume Total	214	145	3	239	139	40	25	94			
Volume Left 76	0	0	3	0	0	31	20	0			
Volume Right ${ }_{\square}+{ }_{\square}$	0	38	0	0	20	3	0	94			
cSH 1177	1700	1700	1197	1700	1700	257	297	821			
Volume to Capacity $\quad 006$	0.13	0.09	0.00	0.14	0.08	015	0.08	0.11		,	$\pm$
Queue Length 95th (ft) 5	0	0	0	0	0	13	7	10			
Control Delay (s) $\quad 8$.	0.0	0.0	8.0	0.0	0.0	21.5	18.2	10.0	$\pm$	\%	\%
Lane LOS			A			C	C	A			
Approach Delay (s) $\quad 15$			01	$\pm$		21.5	11.7				$\square$
Approach LOS C B											
intersection Summary											
Average Delay		3.0									
Intersection Capacity Utilization		31.8\%	$\square 1$	ULev	of Ser			A			
Analysis Period (min)		15									



	4		$\pm$						\%		$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	44	7	${ }^{K}$	14	「"		$\uparrow$			4	「
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	80	570	40	3	425	20.	30	3	3	20	3	100
Peak Hour Factor	0.90	0.95	0.85	0.60	0.95	0.80	0.85	0.65	0.65	0.85	0.65	0.95
Hourly flow rate (vph)	89	600	47	5	447	25	35	5	5	24	5	105
Pedestrians												
Lane Width (ft)												
Walking Speed ( $\mathrm{ft} / \mathrm{s}$ )												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	$\pm$
Median storage veh)												
Upstream signal (ft)												
pX , platoon unblocked												
VC, conflicting volume	472			647			1119	1260	300	942	1282	224
$v C 1$, stage 1 conf vol												
VC2, stage 2 conf vol												
vCu, unblocked vol	472			647			1119	1260	300	942	1282	224
tC, single (s),..	4.1			4.1			75	6.5	6.9	7.5	6.5	6.9
tF ( s )	2.2			22			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	92			99			72	97	99	88	97	86
cM capacity (veh/h)	1086			934			127	154	696	197	150	780
Direction Lane \#	EB. 1	EB2	EB3	EB4	WB 1	WB2	WE 3	WB 4	NB1	SB1	SB2	
Volume Total	89	300	300	47	5	224	224	25	45	28	105	
Volume Left	89	0	0	0	5	0	0	0	35	24	0	
Volume Right	0	0	0	47	0	0	0	25	5	0	105	
CSH	1086	1700	1700	1700	934	1700	1700	1700	142	188	780	
Volume to Capacity	0.08	0.18	0.18	0.03	0.01	0.13	0.13	001	0.31	015	0.14	
Queue Length 95th (ft)	7	0	$0$	0	0	0	0	0	31	13	12	
Control Delay (s).	8.6	0.0	0.0	0.0	8.9	0.0	0.0	0.0	41.5	276	10.3	
Lane LOS	A				A				E	D	B	
Approach Delay (s)	10				0.1				41.5	14.0		
Approach LOS									E	B		
Intersection Summary												
Average Delay 3.3												
Intersection Capacity Utilization			378\%		U Lev	of Se	ce		A			
Analysis Period (min)			15									


	4	$\rightarrow$		$t$			$\checkmark$	4	\%		$\downarrow$	$\pm$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4	"	${ }^{\dagger}$	平个	${ }^{7}$		$\uparrow$			$\uparrow$	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0
Lane Util Factor	1.00	0.95	100	100	0.95	1.00		1.00			100	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		0.97			1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00		0.97			0.95	1.00
Satd. Flow (prot)	1770	3312	1583	1770	3312	1583		1759			1778	1583
Fit Permitted	0.20	100	1.00	0.21	1.00	100		0.85			073	1.00
Satd. Flow (perm)	382	3312	1583	391	3312	1583		1541			1354	1583
Volume (vph)	190	1175	10	2	1195	50	5	2	2	45	2	70
Peak-hour factor, PHF	0.95	0.95	0.70	0.60	0.95	0.85	0.65	0.60	0.60	0.80	0.60	0.85
Adj. Flow (vph)	200.	1237	14	3	1258	59	8	3	3.	56	3	82
RTOR Reduction (vph)	0	0	2	0	0	10	0	3	0	0	0	74
Lane Group Flow (vph)	200	1237	12	3	1258	49	0	11	0	0	59	8
Heavy Vehicles (\%)	2\%	9\%	2\%	2\%	9\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm		Perm	Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4.		4	- 8		8	2			6		6
Actuated Green, G (s)	82.5	82.5	82.5	82.5	82.5	82.5		9.5			9.5	9.5
Effective Green, $\mathrm{g}(\mathrm{s})$	82.5	82.5	82.5	82.5	82.5	82.5		9.5			9.5	9.5
Actuated g/C Ratio	0.82	0.82	0.82	0.82	0.82	0.82		0.10			0.10	0.10
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0
Lane Grp Cap (vph)	315	2732	1306	323	2732	1306		146			129	150
$\mathrm{v} / \mathrm{s}$ Ratio Prot		0.37			0.38							
v/s Ratio Perm	co. 52		0.01	0.01		0.03		0.01			c0. 04	0.00
v/c Ratio	0.63	0.45	0.01	0.01	0.46	0.04		0.08			0.46	0.05
Uniform Delay, d1	3.2	2.4	1.5	1.5	25	1.6		413			42.8	41.2
Progression Factor	1.32	0.53	0.82	0.17	1.12	0.11		1.00			1.00	1.00
Incremental Delay, d2	8.1	0.5	0.0	0.0	0.5	0.0		0.2			2.6	01
Delay (s)	12.4	1.8	1.3	0.3	3.3	0.2		41.5			45.4	41.3
Level of Service	B	A	A	A	A	A		D			D	D
Approach Delay (s)		3.2			3.1			41.5			43.0	
Approach LOS		A			A			D			D	
htersection Summary												
HCM Average Control Delay			5.3		HCM Le	el of S	rvice		A			
HCM Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			100.0		Sum of 1	ost time			8.0			
Intersection Capacity Utilization			58.4\%		ICU Leve	of Ser	vice		B			
			15									

Analysis Period (min)
c Critical Lane Group

	4		V	7		4	4	4	7		$\downarrow$	$\pm$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个	7	${ }^{*}$	44	7		$\uparrow$			$\dagger$	\%
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900.	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0
Lane Util Factor	1.00	0.95	100	1.00	0.95	1.00		100			1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		0.98			1.00	0.85
Fil Protected	0.95	1.00	100	0.95	1.00	1.00		0.96			0.96	1.00
Satd. Flow (prot)	1770	3312	1583	1770	3312	1583		1766			1781	1583
Fit Permitted	0.11	1.00	1.00	0.11	1.00	100		0.74			0.78	1.00
Satd. Flow (perm)	214	3312	1583	207	3312	1583		1354			1453	1583
Volume (vph)	80	1660	40	3	1635	45	30	3	3	45	3	100
Peak-hour factor, PHF	0.90	0.95	0.85	0.60	0.95	0.80	0.85	0.60	0.60	0.80	0.60	0.95
Adj. Flow (vph)	89	1747	47	5	1721	56	35.	5	5	56	5	105
RTOR Reduction (vph)	0	0	8	0	0	10	0	5	0	0	0	47
Lane Group Flow (vph)	89	1747	39	5	1721	46	0	40.	0	0	61	58
Heavy Vehicles (\%)	2\%	9\%	2\%	2\%	9\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm		Perm	Perm		Perm	Perm			Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8.	2			6		6
Actuated Green, G (s)	82.3	82.3	82.3	82.3	82.3	82.3		9.7			9.7	9.7
Effective Green, g (s)	82.3	82.3	82.3	82.3	82.3	82.3		9.7			9.7	97
Actuated g/C Ratio	0.82	0.82	0.82	0.82	0.82	0.82		0.10			0.10	0.10
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	3.0
Lane Grp Cap (vph)	176	2726	1303	170	2726	1303		131			141	154
v/s Ratio Prot		c0.53			0.52							
v/s Ratio Perm	0.42		0.02	0.02		0.03		0.03			c0.04	0.04
v/c Ratio	0.51	0.64	0.03	0.03	0.63	0.04		0.31			0.43	0.38
Uniform Delay, d1	2.7	3.3	16	1.6	3.3	1.6		42.0			42.6	42.3
Progression Factor	1.06	1.00	1.86	0.32	0.47	0.08		1.00			1.00	1.00
Incremental Delay d2	7.2	0.8	0.0	0.2	0.8	0.0		1.3			2.1	15
Delay (s)	10.0	4.2	3.0	0.7	2.3	0.2		43.4			44.7	43.9
Level of Service	B	A	A	A	A	A		D			D	D
Approach Delay (s)		4.4			2.3			43.4			44.2	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM Average Control Delay			5.6		HCM Lev	vel of Se	ervice		A			
HCM Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			100.0		Sum of lo	ost time			8.0			
Intersection Capacity Utilization			68.3\%		ICU Leve	el of Ser	vice		C			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	4			$\checkmark$			4	4	7		$\dagger$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBI	SBT	SBR
Lane Configurations	\%	4 4	*	${ }^{*}$	4	F'	\%	F		\%	+	\%
Ideal Flow (vphpl)	1900.	1900	1900.	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Util Factor	1.00	0.95	100	1.00	0.95	100	1.00	1.00		1.00	100	100
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.89		1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	3471	1583	1770	3471	1583	1770	1657		1770	1863	1583
Fit Permitted	0.22	1.00	100	0.33	1.00	1.00	0.56	100		0.75	1.00	100
Satd. Flow (perm)	412	3471	1583	612	3471	1583	1041	1657		1388	1863	1583
Volume (vph)	116	820	280	45	960	18	55	3	10	28	25	197
Peak-hour factor, PHF	0.95	0.95	0.95	0.85	0.95	0.75	0.85	0.60	0.70	0.80	0.80	0.95
Adj Flow (vph)	122	863	295	53	1011	24	65	5	14	35	31	207
RTOR Reduction (vph)	0	0	71	0	0	8	0	11	0	0	0	188
Lane Group Flow (vph)	122.	863	224	53	1011	16	65	8	0	35	31	19
Heavy Vehicles (\%)	2\%	4\%	2\%	2\%	4\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Tum Type	pm+pt		Perm	Perm		Perm	pm+pt			Perm		Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	74.8	74.8	74.8	63.6	63.6	63.6	17.2	17.2		8.4	8.4	8.4
Effective Green, g (s)	75.8	75.8	75.8	64.6	64.6	64.6	18.2	18.2		9.4	9.4	9.4
Actuated g/C Ratio	0.76	0.76	0.76	0.65	0.65	0.65	0.18	0.18		0.09	0.09	0.09
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (Vph)	424	2631	1200	395	2242	1023	232	302		130	175	149
$\mathrm{v} / \mathrm{s}$ Ratio Prot	0.02	c0. 25			c0.29		c0.02	0.00			0.02	
$\mathrm{V} / \mathrm{s}$ Ratio Perm	0.19		0.14	0.09		0.01	c0.03			0.03		0.01
v/c Ratio	0.29	0.33	0.19	0.13	0.45	0.02	0.28	0.02		0.27	0.18	0.13
Uniform Delay, d1	4.6	3.9	3.4	6.9	8.8	6.3	34.8	33.6		42.1	41.7	41.6
Progression Factor	0.50	0.36	0.52	0.96	1.00	1.05	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.3	0.3	0.3	0.7	0.6	0.0	0.7	0.0		11.	0.5	0.4
Delay (s)	2.6	1.7	2.1	7.3	9.5	6.7	35.4	33.6		43.2	42.2	42.0
Level of Service	A	A	A	A	A	A	D	C		D	D	D
Approach Delay (s)		1.9			9.3			35.0			42.1	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM Average Control Delay			9.9		HCM Le	vel of S	ervice		A			
HCM Volume to Capacity ratio			0.41									
Actuated Cycle Length (s)...			100.0		Sum of 1	ost time			9.0			
Intersection Capacity Utilization			52.7\%		ICU Lev	l of Se	vice		A			
			15									
c Critical Lane Group												


	$\rangle$	$\rightarrow$		$\checkmark$			,	4	1		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBE	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	4	$\stackrel{\square}{7}$	\%	$4 \uparrow$	${ }^{7}$	${ }^{*}$	F		${ }^{7}$	4	7
\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Util. Factor	1.00	0.95	100	100	0.95	1.00	1.00	100		100	1.00	100
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.91		1.00	1.00	0.85
Fil Protected	0.95	1.00	1.00	0.95	1.00	100	0.95	1.00		0.95	100	1.00
Satd. Flow (prot)	1770	3471	1583	1770	3471	1583	1770	1702		1770	1863	1583
Fit Permitted	013	1.00	100	021	1.00	1.00	0.59	100		070	100	1.00
Satd. Flow (perm)	242	3471	1583	391	3471	1583	1097	1702		1313	1863	1583
Volume (vph)	395	1245	60	10	1105	60	220	29	39	53	20	330
Peak-hour factor, PHF	0.95	0.95	0.85	0.70	0.95	0.85	0.95	0.85	0.85	0.85	0.80	0.95
Adj Flow (vph)	416	1311	71.	14	1163	71	232	34	46	62	25	347
RTOR Reduction (vph)	0	0	20	0	0	35	0	36	0	0	0	241
Lane Group Flow (vph)	416	1311	51.	14	1163.	36	232	44	0	62	25	106
Heavy Vehicles (\%)	2\%	4\%	2\%	2\%	4\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	pm+pt		Perm	Perm		Perm	pm+pt			Perm		Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Actuated Green, G (s)	71.4	71.4	71.4	50.0	50.0	50.0	20.6	20.6		10.6	10.6	10.6
Effective Green, g (s)	72.4	72.4	72.4	51.0	51.0	51.0	21.6	21.6		11.6	11.6	11.6
Actuated g/C Ratio	0.72	0.72	0.72	0.51	0.51	0.51	0.22	0.22		0.12	0.12	0.12
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	456	2513	1146	199	1770	807	284	368		152	216	184
$\mathrm{v} / \mathrm{s}$ Ratio Prot	c0.17	0.38			0.34		c0.06	0.03			0.01	
$\mathrm{v} / \mathrm{s}$ Ratio Perm	c0.49		0.03	0.04		0.02	co 12			0.05		0.07
$\mathrm{v} / \mathrm{c}$ Ratio	0.91	0.52	0.04	0.07	0.66	0.04	0.82	0.12		0.41	0.12	0.57
Uniform Delay, d1	24.0	6.1	3.9	12.5	18.1	12.3	36.8	31.5		41.0	39.6	41.9
Progression Factor	1.40	0.53	0.27	1.11	1.29	1.38	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	18.5	0.6	0.1	0.6	17.	0.1	16.4	0.1		18	0.2	4.3
Delay (s)	52.0	3.9	1.1	14.4	24.9	17.0	53.3	31.7		42.8	39.8	46.1
Level of Service	D	A	A	B	C.	B	D	C		D	D	D
Approach Delay (s)		14.9			24.3			47.7			45.3	
Approach LOS		B			C			D			D	
Intersection Summary												
HCM Average Control Delay			24.2		HCM Lev	el of Se	rvice		C			
HCM Volume to Capacity ratio			0.88									
			100.0		Sum of lo	ost time			6.0			
Actuated Cycle Length (s)			81.3\%		CU Leve	of Ser	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												






LSC, Inc.


LSC, Inc.







LSC, Inc.





LSC, Inc.







LSC, Inc.




LSC, Inc.

	*	$\rightarrow$	\%	7			4	4	7		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	4	7	\%	F		${ }^{*}$	f		\%	F	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Utill Factor	1.00	1.00	100	1.00	1.00		1.00	1.00		100	1.00	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	0.89		1.00	0.86	
Fil Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	100	
Satd. Flow (prot)	1770	1759	1583	1770	1758		1770	1653		1770	1593	
Fit Permitted	0.25	1.00	100	0.33	1.00		0.63	100		0.75	100	
Satd. Flow (perm)	467	1759	1583	622	1758		1181	1653		1397	1593	
Volume (vph)	135	700	158	9	870	6	88	2	6	3	2	75
Peak-hour factor, PHF	0.95	0.95	0.95	0.70	0.95	0.65	0.90	0.60	0.65	0.60	0.60	0.90
Adj Flow (vph)	142	737	166	13	916	9	98	3	9	5	3	83
RTOR Reduction (vph)	0	0	33	0	0	0	0	8	0	0	72	0
Lane Group Flow (vph)	142	737	133	13	925	0	98	4	0	5	14	0
Heavy Vehicles (\%)	2\%	8\%	2\%	2\%	8\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm		Perm	Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8.			2			6		
Actuated Green, G (s)	79.2	79.2	79.2	79.2	79.2		12.8	12.8		12.8	12.8	
Effective Green, $\mathrm{g}(\mathrm{s})$	80.2	80.2	80.2	80.2	80.2		13.8	13.8		13,8	13.8	
Actuated g/C Ratio	0.80	0.80	0.80	0.80	0.80		0.14	0.14		0.14	0.14	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	375	1411	1270	499	1410		163	228		193	220	
$\mathrm{v} / \mathrm{s}$ Ratio Prot		0.42			c0.53			0.00			0.01	
$\mathrm{v} / \mathrm{s}$ Ratio Perm	0.30		0.08	0.02			co. 08			0.00		
$\mathrm{v} / \mathrm{c}$ Ratio	0.38	0.52	0.10	0.03	0.66		0.60	0.02		0.03	0.07	
Uniform Delay, d1	28	3.4	2.1	20	4.1		40.5	37.2		37.3	37.5	
Progression Factor	0.29	0.25	0.00	1.15	1.29		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.6	12	0.1	0.1	1.8		6.1	0.0		0.1	0.1	
Delay (s)	3.4	2.1	0.2	2.4	7.2		46.6	37.3		37.3	37.6	
Level of Service	A	A	A	A	A		D	D		D	D	
Approach Delay (s)		1.9			7.1			45.6			37.6	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM Average Control Delay			78		HCM Le	vel of S	rvice		A			
HCM Volume to Capacity ratio			0.65									
Actuated Cycle Length (s)			100.0		Sum of	st time			6.0			
Intersection Capacity Utilization			75.2\%		CU Lev	of Se	vice		D			
Analysis Period (min)			15									
c Critical Lane Group												

LSC, Inc.



	4	$\rightarrow$		$\%$			4	4	$p$		$\downarrow$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	4	7	$\xi$	$\square$		\%	F		${ }^{k}$	$t$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Util Factor	1.00	1.00	100	100	100		100	100		100	100	
Frt	1.00	1.00	0.85	1.00	1.00		1.00	0.93		1.00	0.87	
Fit Protected	0.95	1.00	1.00	0.95	100		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1759	1583	1770	1756		1787	1734		1770	1616	
Fit Permitted	0.53	1.00	100	0.47	1.00		0.95	1.00		0.80	100	
Satd. Flow (perm)	989	1759	1583	881	1756		1787	1734		1490	1616	
Volume (vph)	30	350	332	16	275	3	144	10	8	6	10	100
Peak-hour factor, PHF	0.85	0.95	0.95	0.75	0.95	0.60	0.95	0.70	0.65	0.65	0.70	0.95
Adj. Flow (vph)	35	368	349	21	289	5	152	14	12	9	14	105
RTOR Reduction (vph)	0	0	143	0	1	0	0	9	0	0	100	0
Lane Group Flow (vph)	35	368	206	21	293	0	152	17.	0	9	19	0
Heavy Vehicles (\%)	2\%	8\%	2\%	2\%	8\%	2\%	1\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm		Perm	Perm			Split			Perm		
Protected Phases		4			8		2	2			6	
Permitted Phases	4		4	8						6		
Actuated Green, G (s)	58.0	58.0	58.0	58.0	58.0		26.0	26.0		4.0	4.0	
Effective Green, g (s)	59.0	59.0	59.0	59.0	59.0		27.0	27.0		5.0	5.0	
Actuated g/C Ratio	0.59	0.59	0.59	0.59	0.59		0.27	0.27		0.05	0.05	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	584	1038	934	520	1036		482	468		75	81	
$\mathrm{v} / \mathrm{s}$ Ratio Prot		c0. 21			0.17		c0.09	0.01			c0.01	
$\mathrm{V} / \mathrm{s}$ Ratio Perm	0.04		0.13	0.02						0.01		
v/c Ratio	0.06	0.35	0.22	0.04	0.28		0.32	0.04		0.12	0.24	
Uniform Delay, d1	8.7	10.6	9.7	8.6	10.1		29.1	26.9		45.4	45.7	
Progression Factor	0.47	0.61	2.28	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.8	0.5	0.1	0.7		1.7	0.1		0.7	1.5	
Delay (s)	4.3	7.3	22.5	8.8	10.8		30.8	27.1		46.1	47.2	
Level of Service	A	A	C	A	B		C	C		D	D	
Approach Delay (s)		14.2			10.6			30.3			47.1	
Approach LOS		B			B			C			D	
Intersection Summary												
HCM Average Control Delay			18.6		HCM Le	el of S	ervice		B			
HCM Volume to Capacity ratio			0.34									
Actuated Cycle Length (s)			100.0		Sum of	ost time	(s)		9.0			
Intersection Capacity Utilization			46.2\%		ICU Lev	l of Se	vice		A			
Analysis Period (min)			15									

Analysis Period (min) 15
c Critical Lane Group

LSC, Inc.

c Critical Lane Group


LSC, Inc.



LSC, Inc.


Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\ddagger$			$\stackrel{ }{*}$		${ }^{*}$	餄		*	性	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util Factor		1.00			100		1.00	0.95		1.00	0.95	
Frt		0.96			0.94		1.00	1.00		1.00	0.99	
Flt Protected		0.98			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1746			1749		1770	3363		1770	3343	
Fit Permitted		0.86			0.96		0.38	1.00		0.45	1.00	
Satd. Flow (perm)		1529			1690		704	3363		846	3343	
Volume (vph)	52	30	39	8	41	36	22	490	11	48	605	53
Peak-hour factor, PHF	0.85	0.80	0.85	0.65	0.85	0.85	0.80	0.95	0.70	0.85	0.95	0.85
Adj Flow (vph)	61	38	46	12	48	42	28	516	16	56	637	62
RTOR Reduction (vph)	0	38	0	0	34	0	0	3	0	0	8	0
Lane Group Flow (vph)	0	107	0	0	68	0	28	529	0	56	691	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	7\%	2\%	2\%	7\%	2\%
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		9.9			9.9		39.5	39.5		39.5	39.5	
Effective Green, g (s)		10.9			10.9		40.5	40.5		40.5	40.5	
Actuated g/C Ratio		0.18			0.18		0.68	0.68		0.68	0.68	
Clearance Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
tane Grp Cap (vph)		281			310		480	2293		577	2279	
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.16			c0.21	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		c0.07			0.04		0.04			0.07		
$\mathrm{v} / \mathrm{c}$ Ratio		0.38			0.22		0.06	0.23		0.10	0.30	
Uniform Delay, d1		21.3			20.6		3.1	3.6		3.2	3.8	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.9			0.4		0.2	0.2		0.3	0.3	
Delay (s)		22.2			21.0		3.4	3.8		3.6	4.1	
Level of Service		C			C		A	A		A	A	
Approach Delay (s)		22.2			21.0			3.8			4.1	
Approach LOS		C			c			A			A	
intersection summary												

intersection Summary



LSC, Inc.

	$\rangle$						4	$\dagger$	7		$\dagger$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBE	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\oplus$			$\dagger$		${ }^{4}$	性		${ }_{1}$	侾	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frt		0.96			0.94		1.00	0.99		1.00	0.99	
Filt Protected		0.98			0.99		095	1.00		0.95	100	
Satd. Flow (prot)		1746			1738		1770	3361		1770	3344	
Flt Permitted		0.81			0.94		0.31	1.00		0.39	1.00	
Satd. Flow (perm)		1451			1642		583	3361		732	3344	
Volume (vph)	75	40	50	20	50	55	30	610	20	60	735	60
Peak-hour factor, PHF	0.90	0.85	0.85	0.80	0.85	0.85	0.85	0.95	0.80	0.85	0.95	0.85
Adj. Flow (vph)	83	47	59	25	59	65	35	642	25	71	774	71
RTOR Reduction (vph)	0	38	0	0	52	0	0	4	0	0	9	0
Lane Group Flow (vph)	0	151	0	0	97	0	35	663	0	71	836	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	7\%	2\%	2\%	7\%	2\%
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		9.2			9.2		30.3	30.3		30.3	30.3	
Effective Green, g ( $s$ )		10.2			10.2		31.3	31.3		31.3	31.3	
Actuated g/C Ratio		0.21			0.21		0.63	0.63		0.63	0.63	
Clearance Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		299			338		369	2125		463	2114	
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.20			c0. 25	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		co. 10			0.06		0.06			0.10		
v/c Ratio		0.50			0.29		0.09	0.31		0.15	0.40	
Uniform Delay, d1		17.4			16.6		3.6	4.2		3.7	4.5	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.3			0.5		0.5	0.4		0.7	0.6	
Delay (s)		18.8			17.1		4.1	4.6		4.4	5.0	
Level of Service		B			B		A	A		A	A	
Approach Delay (s)		18.8			17.1			4.5			5.0	
Approach LOS		B			B			A			A	
ntersection Summary												
HCM Average Control Delay			7.1		HCM Le	el of S	rvice		A			
HCM Volume to Capacity ratio			0.42									
Actuated Cycle Length (s)			49.5		Sum of	st time			8.0			
Intersection Capacity Utilization			51.5\%		ICU Leve	of Se	vice		A			
Analysis Period (min)			15									
c Critical Lane Group												


	4						4	$\dagger$	$p$		$\downarrow$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			$\dagger$		${ }^{4}$	4t		${ }_{1}$	49	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Util. Factor		1.00			100		1.00	0.95		100	0.95	
Frt		0.95			0.96		1.00	1.00		1.00	0.98	
Fit Protected		0.99			0.99		0.95	1.00		0.95	100	
Satd. Flow (prot)		1751			1786		1770	3397		1770	3365	
Fit Permitted		0.82			0.95		0.38	1.00		0.41	1.00	
Satd. Flow (perm)		1452			1703		715	3397		758	3365	
Volume (vph)	50	65	60	10	70	30	50	570	10	55	565	60
Peak-hour factor, PHF	0.85	0.85	0.85	0.70	0.85	0.85	0.85	0.95	0.70	0.85	0.95	0.85
Adj Flow (vph)	59	76	71	14	82	35	59	600	14.	65	595	71
RTOR Reduction (vph)	0	23	0	0	16	0	0	1	0	0	6	0
Lane Group Flow (vph)	0	183	0	0	115	0	59	613	0	65	660	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	6\%	2\%	2\%	6\%	2\%
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		16.0			16.0		74.0	74.0		74.0	74.0	
Effective Green, g (s)		18.0			18.0		76.0	76.0		76.0	76.0	
Actuated g/C Ratio		0.18			0.18		0.76	0.76		0.76	0.76	
Clearance Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		261			307		543	2582		576	2557	
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.18			c0. 20	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		co. 13			0.07		0.08			0.09		
v/c Ratio		0.70			0.38		0.11	0.24		0.11	0.26	
Uniform Delay, d1		38.5			36.1		3.1	3.5		3.2	3.6	
Progression Factor		1.00			1.00		1.26	1.31		0.91	0.97	
Incremental Delay, d2		8.2			0.8		0.4	0.2		0.4	0.2	
Delay (s)		46.7			36.8		4.3	4.8		3.3	3.7	
Level of Service		D			D		A	A		A	A	
Approach Delay (s)		46.7			36.8			4.7			3.7	
Approach LOS		D			D			A			A	
Intersection Summary												
HCM Average Control Delay			117		HCM Le	el of S	rvice		B			
HCM Volume to Capacity ratio			0.34									
Actuated Cycle Length (s)			100.0		Sum of	st tim			6.0			
Intersection Capacity Utilization			47.4\%		ICU Leve	of Se	vice		A			
Analysis Period (min)			15									
C Critical Lane Group												


	*						4	$\dagger$	7	\%	$\downarrow$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\dagger$			\$		\%	中t		*	性	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Util, Factor		100			100		1.00	0.95		100	0.95	
Frt		0.95			0.95		1.00	1.00		1.00	0.99	
Fit Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1750			1759		1770	3394		1770	3378	
Flt Permitted		0.76			0.92		0.25	1.00		0.30	1.00	
Satd. Flow (perm)		1356			1629		462	3394		566	3378	
Volume (vph)	75	105	95	20	100	65	80	770	20	70	880	60
Peak-hour factor, PHF	0.90	0.95	0.90	0.80	0.95	0.85	0.90	0.95	0.80	0.85	0.95	0.85
Adj Flow (vph)	83	111	106	25	105	76	89	811	25	82	926	71
RTOR Reduction (vph)	0	22	0	0	23	0	0	2	0	0	5	0
Lane Group Flow (vph)	0	278	0	0	183	0	89	834	0	82	992	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	6\%	2\%	2\%	6\%	2\%
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		22.5			22.5		67.5	67.5		67.5	67.5	
Effective Green, g (s)		24.5			24.5		69.5	69.5		69.5	69.5	
Actuated g/C Ratio		0.24			0.24		0.70	0.70		0.70	0.70	
Clearance Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		332			399		321	2359		393	2348	
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.25			c0.29	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		c0.21			0.11		0.19			0.14		
v/c Ratio		0.84			0.46		0.28	0.35		0.21	0.42	
Uniform Delay, d1		35.9			32.1		5.8	6.2		5.4	6.6	
Progression Factor		1.00			1.00		1.19	1.13		1.04	1.11	
Incremental Delay, d2		16.6			0.8		1.5	0.3		12	0.5	
Delay (s)		52.5			32.9		8.3	7.3		6.8	7.8	
Level of Service		D			C		A	A		A	A	
Approach Delay (s)		52.5			32.9			7.4			7.8	
Approach LOS		D			C			A			A	
Intersection Summary												
HCM Average Control Delay			15.0		HCM Level of Service				B			
HCM Volume to Capacity ratio			0.53		Sum of lost time (s)							
Actuated Cycle Length (s)			100.0						6.0			
Intersection Capacity Utilization			69.8\%		ICU Level of Service				C			

Analysis Period (min) 15
c Critical Lane Group


HCM Unsignalized Intersection Capacity Analysis

## 22: Georgia \& SH 135

Movement	EBL	EBT	EBR	WBL	WBT	WBE	NBL	NBT	NBR		SBT	SBR
Lane Configurations		4			4		${ }_{1}$	个中		${ }^{7}$	$\uparrow$	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	20	10	15	5	10		515	515	10	45	475	45
Peak Hour Factor	0.80	0.70	0.75	0.65	0.70	0.80	0.75	0.95	0.70	0.85	0.95	0.85
Hourly flow rate (vph)	25	14	20	8	14	25	20	542	14	53	500	53
Pedestrians												
Lane Width (ft)												
Walking Speed ( $\mathrm{ft} / \mathrm{s}$ )												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								410				
pX, platoon unblocked												
VC, conflicting volume	976	1229	276	972	1248	278	553			556		
vC1, stage 1 conf vol												
VC2, stage 2 conf vol												
vCu , unblocked vol	976	1229	276	972	1248	278	553			556		
tc, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage ( s )												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	86	91	97	96	91	97	98			95		
cM capacity (veh/h)	175	164	721	178	160	719	1013			1010		
Pirecton, Lane \#	EB1	WB1	NB1	NB2	NB 3	SB1	SB2	SB3				
Volume Total	59	47	20	361	195	53	333	220				
Volume Left	25	8	20	0	0	53	0	0				
Volume Right	20	25	0	0	14	0	0	53				
CSH	230	280	1013	1700	1700	1010	1700	1700				
Volume to Capacity	0.26	0.17	0.02	0.21	0.11	005	0.20	0.13				
Queue Length 95th (ft)	25	15	2	0	0	4	0	0				
Control Delay (s)	26.0	20.4	8.6	0.0	00	8.8	0.0	0.0				
Lane LOS	D	C	A			A						
Approach Delay (s)	26.0	20.4	0.3			0.8						
Approach LOS	D	C										
Intersection Summary												
Average Delay 2.4												
Intersection Capacity UtilizationAnalysis Period (min)		- $34.0 \%$		ICU Level of Service					A			
		15										


				7			4	4	7		$\downarrow$	*
Movement	ERL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			$\oplus$		${ }_{1}$	19		${ }_{5}$	$\uparrow \uparrow$	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	35	10.	25	15	10	35	25	700	15	30	815	30
Peak Hour Factor	0.85	0.70	0.80	0.75	0.70	0.85	0.85	0.95	0.75	0.85	0.95	0.85
Hourly flow rate (vph)	41	14	31	20	14	41	29	737	20	35	858	35
Pedestrians												
Lane Width (ft)												
Walking Speed ( $\mathrm{ft} / \mathrm{s}$ )												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft) .												
PX, platoon unblocked	0.95	0.95		0.95	0.95	0.95				0.95		
vC, conflicting volume	1422	1762	447	1344	1769	378	893			757.		
$\mathrm{VC1}$, stage 1 conf vol												
VC2, stage 2 conf vol												
vCu, unblocked vol	1392	1749	447	1309	1757	294	893			692		
tc, single (s)	7.5	6.5	6.9	75	6.5	6.9	4.1			4.1		
$\mathrm{tc}, 2$ stage ( s )												
tr (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
po queue free \%	43	81	94	76	81	94	96			96		
cM capacity (veh/h)	73	74	559	84	74	668	755			854		
Direction, Lane \# EB1 WB1 NB1 NB 2 NB3 SB1 SB2 SB3												
Volume Total	87	75	29	491	266	35	572	321				
Volume Left	41	20	29	0	0	35	0	0				
Volume Right	31	41	0	0	20	0	0	35				
CSH	106	153	755	1700	1700	854	1700	1700				
Volume to Capacity	082	0.49	0.04	029	0.16	0.04	0.34	0.19				
Queue Length 95th (ft)	115	59	3	0	0	3	0	0				
Control Delay (s)	116.4	49.6	10.0	0.0	0.0	9.4	0.0	0.0				
Lane LOS	F	E	A			A						
Approach Delay (s)	116.4	49.6	0.4			0.4						
Approach LOS	F	E										
Intersection Summary												
Average Delay 7.7												
Intersection Capacity UtilizationAnalysis Period (min)			39,1\%	ICU Level of Service					A			
			15									


	4			7			4	4	7		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢		${ }^{4}$	个t		4	中 ${ }^{\text {a }}$	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	20	15	35	5	20	25	30	600	10	50	590	45
Peak Hour Factor	0.80	0.75	0.85	0.65	0.80	0.85	0.85	0.95	0.70	0.85	0.95	0.85
Hourly flow rate (vph)	25	20	41	8	25	29	35.	632	14	59	621	53
Pedestrians												
Lane Width (ft)												
Walking Speed (tt/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								410				
pX, platoon unblocked	0.99	0.99		0.99	0.99	0.99				0.99		
VC, conflicting volume	1193	1482	337	1189	1501	323	674			646		
vC 1 , stage 1 conf vol												
VC2, stage 2 conf vol												
vCu, unblocked vol	1181	1474	337	1176	1493	298	674			626		
tc, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage ( s )												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	76	82	94	93	77	96	96			94		
cM capacity (veh/h)	104	111	659	108	108	688	913			938		
Direction, Lane \#	EB1	WB 1	NB 1	NB 2	NB3	SB1	SB2	SB 3				
Volume Total	86	62	35	421	225	59	414	260				
Volume Left	25	8	35	0	0	59	0	0				
Volume Right	41	29	0	0	14	0	0	53				
CSH	179	180	913	1700	1700	938	1700	1700				
Volume to Capacity	0.48	0.34	0.04	0.25	0.13	0.06	0.24	0.15				
Queue Length 95th (ft)	58	36	3	0	0	5	0	0				
Control Delay (s)	42.5	35.1	9.1	0.0	0.0	9.1	0.0	0.0				
Lane LOS	E	E	A			A						
Approach Delay (s)	42.5	35.1	0.5			0.7						
Approach LOS	E	E										
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utilization			39.7\%	ICU Level of Service					A			
Analysis Period (min)			15									



Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\dagger$			$\uparrow$		${ }^{*}$	中		\%	4t	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	35	20	65	15	20	40	50	835	15	35	920	30
Peak Hour Factor	0.85	0.80	0.85	0.75	0.80	0.85	0.85	0.95	0.75	0.85	0.95	0.85
Hourly flow rate (vph)	41	25	76	20	25	47	59	879	20	41	968	35
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								410				
pX , platoon unblocked	0.93	0.93		0.93	0.93	0.93				0.93		
VC, conflicting volume	1685	2085	502	1662	2093	449	1004			899		
VC 1 , stage 1 conf vol												
VC2, stage 2 conf vol												
vCu , unblocked vol	1660	2092	502	1635	2100	324	1004			810		
tc, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tc, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	40	85	19	39	92	91			95		
cM capacity (veh/h)	25	41	515	25	41	621	686			751		
Oirection, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB2	SB 3				
Volume Total	143	92	59	586	313	41	646	358				
Volume Left	41	20	59	0	0	41	0	0				
Volume Right	76	47	0	0	20	0	0	35				
CSH	60	62	686	1700	1700	751	1700	1700				
Volume to Capacity	2.37	1.49	0.09	0.34	0.18	0.05	0.38	0.21				
Queue Length 95th (ft)	353	202	7	0	0	4	0	0				
Control Delay (s)	771.6	401.8	10.7	0.0	0.0	10.1	0.0	0.0				
Lane LOS	F	F	B			B						
Approach Delay (s)	771.6	4018	0.7			0.4						
Approach LOS	F	F										
Intersection Summary												
Average Delay			66.2									
			50.6\%	ICU Level of Service					A			
			15									


	$\stackrel{ }{*}$					4	4	4	P		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$	F		4	F	${ }^{7}$	4 $\uparrow$	"	7	中t	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor		100	100		1.00	1.00	100	0.95	1.00	1.00	0.95	
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	0.97	
Flt Protected		0.97	1.00		0.98	1.00	0.95	100	1.00	0.95	1.00	
Satd. Flow (prot)		1810	1583		1822	1583	1770	3374	1583	1770	3294	
Flt Permitted		0.79	1.00		0.82	1.00	0.47	1.00	1.00	0.58	1.00	
Satd. Flow (perm)		1462	1583		1531	1583	872	3374	1583	1081	3294	
Volume (vph)	48	34	30	22	27	17	42	265	19	21	368	108
Peak-hour factor, PHF	0.85	0.85	0.85	0.80	0.80	0.75	0.85	0.95	0.75	0.80	0.95	0.95
Adj. Flow (vph)	56	40	35	28	34	23	49	279	25	26	387	114
RTOR Reduction (vph)	0	0	30	0	0	20	0	0	7	0	30	0
Lane Group Flow (vph)	0	96	5	0	62	3	49	279	18	26	471	0
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	7\%	2\%	2\%	7\%	2\%
Turn Type	Perm		Perm	Perm		Perm	Perm		Perm	Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8.		8	2		2	6		
Actuated Green, G (s)		7.7	7.7		7.7	7.7	41.8	41.8	41.8	41.8	41.8	
Effective Green, g (s)		7.7	7.7		7.7	77	43.8	43.8	43.8	43.8	43.8	
Actuated g/C Ratio		0.13	0.13		0.13	0.13	0.74	0.74	0.74	0.74	0.74	
Clearance Time (s)		4.0	4.0		4.0	4.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		189	205		198	205	642	2484	1165	796	2425	
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.08			c0. 14	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		c0.07	0.00		0.04	0.00	0.06		0.01	0.02		
v/c Ratio		0.51	0.02		0.31	0.01	0.08	0.11	0.02	0.03	0.19	
Uniform Delay, d1		24.1	22.6		23.5	22.6	2.2	2.3	21	2.1	2.4	
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.1	0.0		09	0.0	0.2	0.1	0.0	0.1	0.2	
Delay (s)		26.3	22.7		24.4	22.6	2.4	2.3	2.1	2.2	2.6	
Level of Service		c	C		c	C	A	A	A	A	A	
Approach Delay (s)		25.3			23.9			2.3			2.6	
Approach LOS		C			C			A			A	
Intersection Summary												
HCM Average Control DelayHCM Volume to Capacity ratio			6.9		HCM Le	el of S	rvice		A			
			0.24									
HCM Volume to Capacity ratioActuated Cycle Length (s)			59.5		Sum of	st time			8.0			
Intersection Capacity Utilization			38.1\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									
c Critical Lane Group												



C Critical Lane Group

					4		4	4	7		1	$\checkmark$
Movement	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	"	\%	44	\%	${ }^{4}$	44	7
\|deal Flow (vphpl).	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util Factor		1.00	1.00		1.00	1.00	100	0.95	100	1.00	0.95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.97	100		0.98	1.00	0.95	100	1.00	0.95	1.00	100
Satd. Flow (prot)		1809	1583		1817	1583	1770	3374	1583	1770	3374	1583
Fit Permitted		0.76	1.00		0.79	1.00	0.48	1.00	1.00	0.48	1.00	1.00
Satd. Flow (perm)		1425	1583		1481	1583	901	3374	1583	887	3374	1583
Volume (vph)	80	55	100	40	40	35	80	460	45	60	445	65
Peak-hour factor, PHF	0.85	0.85	0.95	0.85	0.85	0.85	0.85	0.95	0.85	0.85	0.95	0.85
Adj. Flow (vph)	94	65	105	47	47	41	94	484	53	71	468	76
RTOR Reduction (vph)	0	0	84	0	0	33	0	0	18	1	0	25
Lane Group Flow (vph)	0	159	21	0	94	8	94	484	35	71	468	51
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	7\%	2\%	2\%	7\%	2\%
Turn Type	Perm		Perm									
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		1.	6		6
Actuated Green, G (s)		11.7	11.7		11.7	11.7	37.1	37.1	37.1	37.1	37.1	37.1
Effective Green, 9 ( s )		11.7	11.7		117	117	39.1	39.1	39.1	39.1	39.1	39.1
Actuated g/C Ratio		0.20	0.20		0.20	0.20	0.66	0.66	0.66	0.66	0.66	0.66
Clearance Time (s)		4.0	4.0		4.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		284	315		295	315	599	2244	1053	590	2244	1053
$\mathrm{V} / \mathrm{s}$ Ratio Prot								c0. 14			0.14	
$\mathrm{V} / \mathrm{s}$ Ratio Perm		c0. 11	0.01		0.06	0.01	0.10		0.02	0.08		0.03
v/c Ratio		0.56	0.07		0.32	0.03	0.16	0.22	0.03	0.12	0.21	0.05
Uniform Delay, d1		21.2	19.1		20.1	190	3.7	3.9	3.4	3.6	3.8	3.4
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		2.4	0.1		0.6	0.0	06	0.2	0.1	0.4	02	0.1
Delay (s)		23.6	19.2		20.8	19.0	4.2	4.1	3.4	4.0	4.0	3.5
Level of Service		c	B		c	B	A	A	A	A	A	A
Approach Delay (s)		21.9			20.2			4.0			4.0	
Approach LOS		c			C			A			A	
Intersection Summary												
HCM Average Control Delay			8.2		HCM Le	el of S	rvice		A			
HCM Volume to Capacity ratio			0.30									
Actuated Cycle Length (s).			58.8		Sum of	st time			8.0			
Intersection Capacity Utilization			40.7\%		ICU Lev	of Se	vice		A			
Analysis Period (min)			15									

c Critical Lane Group

	*						4	$\dagger$	$P$		$\downarrow$	$\stackrel{ }{ }+$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		$\uparrow$	"	\%	44	"	${ }^{K}$	44	「
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00	100		1.00	1.00	1.00	0.95	100	100	0,95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.97	1.00		098	1.00	0.95	1.00	100	0.95	100	1.00
Satd. Flow (prot)		1814	1583		1817	1583	1770	3374	1583	1770	3374	1583
Flt Permitted		0.71	100		076	1.00	0.35	1.00	100	0.41	100	100
Satd. Flow (perm)		1324	1583		1413	1583	650	3374	1583	765	3374	1583
Volume (vph)	75	65	75	80	80	75	120	600	125	90	725	65
Peak-hour factor, PHF	0.85	0.85	0.85	0.90	0.90	0.85	0.95	0.95	0.95	0.90	0.95	0.85
Adj Flow (vph)	88	76	88	89	89	88	126	632	132	100	763	76
RTOR Reduction (vph)	0	0	70	0	0	70	0	0	48	0	0	28
Lane Group Flow (vph)	0	164	18	0	178	18	126	632	84	100	763	48
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	7\%	2\%	2\%	7\%	2\%
Turn Type	Perm		Perm									
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)		10.1	10.1		10.1	10.1	29.9	29.9	29.9	29.9	29.9	29.9
Effective Green, $\mathrm{g}(\mathrm{s})$		10.1	10.1		10.1	10.1	31.9	31.9	319	31.9	31.9	31.9
Actuated g/C Ratio		0.20	0.20		0.20	0.20	0.64	0.64	0.64	0.64	0.64	0.64
Clearance Time (s)		4.0	4.0		4.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		267	320		285	320	415	2153	1010	488	2153	1010
v/s Ratio Prot								0.19			c0. 23	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		0.12	0.01		co. 13	0.01	0.19		0.05	0.13		0.03
v/c Ratio		0.61	0.06		0.62	0.06	0.30	0.29	0.08	0.20	0.35	0.05
Uniform Delay, d1 1		18.2	16.1		18.2	16.1	4.1	4.0	3.5	3.8	4.2	3.4
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		42	0.1		4.2	0.1	19	0.3	0.2	0.9	0.5	0.1
Delay (s)		22.3	16.2		22.4	16.2	5.9	4.4	3.6	4.7	4.7	3.5
Level of Service		C	B		C	B	A	A	A	A	A	A
Approach Delay (s)		20.2			20.4			4.5			4.6	
Approach LOS		C			C			A			A	
Intersection Summary												
HCM Average Control Delay			8.0		HCM Lev	el of S	ervice		A			
HCM Volume to Capacity ratio			0.42									
			50.0		Sum of lo	ost time	(s)		8.0			
Intersection Capacity Utilization			52.0\%		ICU Leve	of Se	vice		A			
Analysis Period (min)...			15									
c Critical Lane Group												


	4	$\rightarrow$					4	4	7	5	$\downarrow$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	$\stackrel{7}{7}$		$\uparrow$	\％	＊	坐	7	\％	本車	P
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Utill Factor		1.00	100		1.00	100	1.00	0.95	100	1.00	0.95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.97	1.00		0.98	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1813	1583		1823	1583	1770	3406	1583	1770	3406	1583
Flt Permitted		0.70	100		0.70	100	0.44	1.00	1.00	0.45	1.00	1.00
Satd．Flow（perm）		1307	1583		1301	1583	825	3406	1583	830	3406	1583
Volume（vph）	80	65	100	40	50	65	80	510	45	85	515	65
Peak－hour factor，PHF	0.90	0.90	0.95	0.90	0.90	0.95	0.95	0.95	0.95	0.95	0.95	0.85
Adj Flow（vph）	89	72	105	44	56	68	84	537	47	89	542	76
RTOR Reduction（vph）	0	0	88	0	0	57	0	0	10	0	0	17
Lane Group Flow（vph）	0	161	17.	0	100	11	84	537	37	89	542	59
Heavy Vehicles（\％）	2\％	2\％	2\％	2\％	2\％	2\％	2\％	6\％	2\％	2\％	6\％	2\％
Turn Type	Perm		Perm									
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green，G（s）		15.2	15.2		15.2	15.2	74.8	74.8	74.8	74.8	74.8	74.8
Effective Green，g（s）		16.2	16.2		16.2	16.2	77.8	77.8	77.8	77.8	77.8	77.8
Actuated g／C Ratio		0.16	0.16		0.16	0.16	0.78	0.78	0.78	0.78	0.78	0.78
Clearance Time（s）		4.0	4.0		4.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）		212	256		211	256	642	2650	1232	646	2650	1232
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.16			c0． 16	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		co． 12	0.01		0.08	0.01	0.10		0.02	0.11		0.04
$\mathrm{v} / \mathrm{c}$ Ratio		0.76	0.07		0.47	0.04	0.13	0.20	0.03	0.14	0.20	0.05
Uniform Delay，d1		40.0	35.5		38.0	35.4	2.7	2.9	2.5	2.8	2.9	2.6
Progression Factor		1.00	1.00		1.00	1.00	2.34	2.22	4.66	1.00	1.00	1.00
Incremental Delay，d2		14.4	0.1		17	0.1	0.4	0.2	0.0	0.4	0.2	0.1
Delay（s）		54.5	35.6		39.7	35.4	6.8	6.7	11.8	3.2	3.1	2.6
Level of Service		D	D		D	D	A	A	B	A	A	A
Approach Delay（s）		47.0			38.0			7.0			3.1	
Approach LOS		D			D			A			A	
Intersection Summary												
HCM Average Control Delay			14.2		HCM Le	vel of S	rvice		B			
HCM Volume to Capacity ratioActuated Cycle Length（s）			0.30									
			100.0		Sum of	ost time			6.0			
Intersection Capacity Utilization			43．3\％		ICU Level of Service				A			
Analysis Period（min）		15										

c Critical Lane Group

	4					4	4	$\dagger$	7	*	$\dagger$	$\checkmark$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$	F		$\uparrow$	「	${ }^{4}$	14	7	${ }^{*}$	44	F
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor		1.00	1.00		1.00	100	1.00	0.95	1.00	1.00	0.95	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.98	100		0.98	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1835	1599		1838	1599	1787	3406	1599	1787	3406	1599
Fit Permitted		0.79	1.00		0.80	1.00	0.32	100	100	0.36	1.00	1.00
Satd. Flow (perm)		1486	1599		1505	1599	596	3406	1599	672	3406	1599
Volume (vph)	75	75	75	80	90	115	120	695	125	140	795	65
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.90
Adj. Flow (vph)	79	79	79	84	95	121	126	732	132	147	837	72
RTOR Reduction (vph)	0	0	65	0	0	100	0	0	31	0	0	17
Lane Group Flow (vph)	0	158	14	0	179	21.	126	732	101.	147	837	55
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	1\%	6\%	1\%	1\%	6\%	1\%
Turn Type	Perm		Perm									
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8.	2		2	6		6
Actuated Green, G (s)		16.3	16.3		16.3	16.3	73.7	73.7	73.7	73.7	73.7	73.7
Effective Green, g (s)		17.3	17.3		17.3	173	76.7	76.7	76.7	76.7	76.7	76.7
Actuated g/C Ratio		0.17	0.17		0.17	0.17	0.77	0.77	0.77	0.77	0.77	0.77
Clearance Time (s)		4.0	4.0		4.0	4.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		257	277		260	277	457	2612	1226	515	2612	1226
$\mathrm{v} / \mathrm{s}$ Ratio Prot								0.21			c0.25	
$\mathrm{v} / \mathrm{s}$ Ratio Perm		011	0.01		co. 12	0.01	0.21		0.06	0.22		0.03
v/c Ratio		0.61	0.05		0.69	0.08	0.28	0.28	0.08	0.29	0.32	0.05
Uniform Delay, d1		38.3	34.5		38.8	34.6	3.4	3.5	2.9	3.5	3.6	2.8
Progression Factor		1.00	1.00		1.00	1.00	1.89	1.89	4.19	1.00	1.00	1.00
Incremental Delay, d2		4.3	0.1		7.4	0.1	1.4	0.3	0.1	1.4	0,3	0.1
Delay (s)		42.6	34.6		46.2	34.8	7.9	6.8	12.3	4.9	3.9	2.9
Level of Service		D	C.		D	C.	A	A	B	A	A	A
Approach Delay (s)		39.9			41.6			7.7			4.0	
Approach LOS		D			D			A			A	
mersection Summary												
HCM Average Control Delay			13.1		HCM Le	el of Se	rvice		B			
HCM Volume to Capacity ratio			0.39									
Actuated Cycle Length (s) .			100.0		Sum of 1	st time			6.0			
Intersection Capacity Utilization			54.5\%		ICU Leve	of Ser	vice		A			
Analysis Period (min) .			15									

c Critical Lane Group








	\%							$\uparrow$	1	*	$\dagger$	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			4			$\dagger$			*	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	5	20	5	10	30	65	5	85	10	45	150	10
Peak Hour Factor	065	0.80	0.65	070	0.85	0.85	0.65	0.90	0.70	0.85	0.95	0.70
Hourly flow rate (vph)	8	25	8	14	35	76	8	94	14	53	158	14
Direction Lane \#	EB 1	WB1	NB 1	SB 1								
Volume Total (vph)	40	126	116	225								
Volume Left (vph)	8	14	8	53								
Volume Right (vph)	8	76	14	14								
Hadj (s)	-0.04	-0.31	-0.03	0.04								
Departure Headway (s)	4.8	4.4	4.5	4.5								
Degree Utilization, $x$	0.05	0.16	015	0.28								
Capacity (veh/h)	681	747	753	767								
Control Delay (s)	8.1	8.3	8.3	92								
Approach Delay (s)	8.1	8.3	8.3	9.2								
Approach LOS	A	A	A	A								
Intersection Summary												
Delay			8.7									
HCM Level of Service			A									
Intersection Capacity Utilization			31.5\%		CU Leve	of Ser			A			
Analysis Period (min)			15									



	*			$\psi$			4	$\uparrow$	\%		$\downarrow$	$\downarrow$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\dagger$			$\dagger$			$\uparrow$			$\dagger$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	5	110	30	20	100	95	30	135	20	85	200	10
Peak Hour Factor	0.65	0,95	0.85	0.80	0.95	090	0.85	0.95	080	0.90	0.95	0.70
Hourly flow rate (vph)	8	116	35	25	105	106	35	142	25	94	211	14
Birection, Lane \#	EB 1	WB1	NB1	SB1								
Volume Total (vph)	159	236	202	319								
Volume Left (vph)	8	25	35	94								
Volume Right (vph)	35	106	25	14								
Hadj (s)	-0.09	-0.21	-0.01	0.07								
Departure Headway (s)	5.7	5.4	5.6	5.4								
Degree Utilization, $\times$	0.25	0.36	0.31	0.48								
Capacity (veh/h)	559	599	584	620								
Control Delay (s)	10.6	11.4	11.1	13.4								
Approach Delay (s)	10.6	11.4	11.1	13.4								
Approach LOS	B	B	B	B								
Intersection Summary												
Delay			11.9									
HCM Level of Service			B									
Intersection Capacity Utilization			53.8\%		CU Leve	of Se			A			
Analysis Period (min)			15									




	7		$\dagger$	7		$\downarrow$	
Movement	WBL	WBR	NBT	NBR	SB1	SBT	
Lane Configurations	${ }^{4}$		4	7		$\uparrow$	
Sign Control	Stop		Stop			Stop	
Volume (vph)	20	15	50	105	75	65	
Peak Hour Factor	0.80	0.75	0.85	0.95	0,85	0.85	
Hourly flow rate (vph)	25	20	59	111	88	76	
Direction, Lane \#	WB 1	NB1	NB2	SB1			
Volume Total (vph)	45	59	111	165			
Volume Left (vph)	25	0	0	88			
Volume Right (vph)	20	0	111	0			
Hadj (s)	-0.12	0.03	-0.67	0.14			
Departure Headway (s)	4.5	4.8	4.1	4.4			
Degree Utilization, $x$	0.06	0.08	0.12	0.20			
Capacity (veh/h)	739	738	864	803			
Control Delay (s)	7.8	7.0	6.4	8.5			
Approach Delay (s)	7.8	6.6		8.5			
Approach Los	A	A		A			
Hetersection Summary							
Delay			7.6				
HCM Level of Service			A				
Intersection Capacity Utilization			24.2\%		ICU Leve	of Service	A
Analysis Period (min)			15				




LSC, Inc.


## Appendix C: Time/Space Diagrams









[^0]:    W: \LSC $\backslash$ Projects $\backslash 2021 \backslash 210040$-GunnisonRisingPhase2 $\backslash$ Report $\backslash$ Nov-2021 $\backslash$ GunnisonRising-Summary-112921.wpd

